Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans

Biotechnology for Biofuels - Tập 13 - Trang 1-15 - 2020
Ashish A. Prabhu1, Ekkarin Bosakornranut1, Yassin Amraoui1, Deepti Agrawal2, Frederic Coulon1, Vivekanand Vivekanand3, Vijay Kumar Thakur4, Vinod Kumar1
1School of Water, Energy and Environment, Cranfield University, Cranfield, UK
2Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, India
3Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
4Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Edinburgh, UK

Tóm tắt

Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. In this aspect, microbial cell factories are harnessed for the sustainable production of commercially viable biochemicals by valorising C5 and C6 sugars generated from agro-industrial waste. However, in the terrestrial ecosystem, microbial systems can efficiently consume glucose. On the contrary, pentose sugars are less preferred carbon source as most of the microbes lack metabolic pathway for their utilization. The effective utilization of both pentose and hexose sugars is key for economical biorefinery. Bioprospecting the food waste and selective enrichment on xylose-rich medium led to screening and isolation of yeast which was phylogenetically identified as Pichia fermentans. The newly isolated xylose assimilating yeast was explored for xylitol production. The wild type strain robustly grew on xylose and produced xylitol with > 40% conversion yield. Chemical mutagenesis of isolated yeast with ethyl methanesulphonate (EMS) yielded seven mutants. The mutant obtained after 15 min EMS exposure, exhibited best xylose bioconversion efficiency. This mutant under shake flask conditions produced maximum xylitol titer and yield of 34.0 g/L and 0.68 g/g, respectively. However, under the same conditions, the control wild type strain accumulated 27.0 g/L xylitol with a conversion yield of 0.45 g/g. Improved performance of the mutant was attributed to 34.6% activity enhancement in xylose reductase with simultaneous reduction of xylitol dehydrogenase activity by 22.9%. Later, the culture medium was optimized using statistical design and validated at shake flask and bioreactor level. Bioreactor studies affirmed the competence of the mutant for xylitol accumulation. The xylitol titer and yield obtained with pure xylose were 98.9 g/L and 0.67 g/g, respectively. In comparison, xylitol produced using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse was 79.0 g/L with an overall yield of 0.54 g/g. This study demonstrates the potential of newly isolated P. fermentans in successfully valorising the hemicellulosic fraction for the sustainable xylitol production.

Tài liệu tham khảo

Kwak S, Jo JH, Yun EJ, Jin YS, Seo JH. Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv. 2019;37:271–83. Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, et al. Lignocellulose deconstruction in the biosphere. Curr Opin Chem Biol. 2017;41:61–70. Geng W, Venditti RA, Pawlak JJ, De Assis T, Gonzalez RW, Phillips RB, et al. Techno-economic analysis of hemicellulose extraction from different types of lignocellulosic feedstocks and strategies for cost optimization. Biofuels Bioprod Biorefining. 2020;14:225–41. Maio D Di, Turley D. NNFCC. www.nnfcc.co.uk. Turley D. A review of the Integrated Biorefining Research and Technology Club (IBTI Club) A report for the Biotechnology and Biological Sciences Research Council (BBSRC) Reviewer. 2017. www.nnfcc.co.uk Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol Biofuels. 2020;13:113. Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, et al. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci USA. 2017;114:7349–54. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA. Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev. 2019;1(107):587–601. Yang B, Tao L, Wyman CE. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod Biorefin. 2018;12(1):125–38. Cavka A, Jönsson LJ. Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol. 2013;136:368–76. Chandel AK, da Silva SS, Singh OV. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenergy Res. 2013;6:388–401. Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D. Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res. 2017;197:9–21. Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol. 2019;39:924–43. De Albuquerque TL, Da Silva IJ, De MacEdo GR, Rocha MVP. Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem. 2014;49:1779–89. Arcaño YD, García ODV, Mandelli D, Carvalho WA, Pontes LAM. Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today. 2020;344:2–14. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–17. Sanna ML, Zara S, Zara G, Migheli Q, Budroni M, Mannazzu I. Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol. 2012;116:769–77. Huang CF, Jiang YF, Guo GL, Hwang WS. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol. 2011;102:3322–9. Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 2006;41:2333–6. Oh DK, Kim SY. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol. 1998;50(4):419–25. Pal M, Sharma RK. Exoelectrogenic response of Pichia fermentans influenced by mediator and reactor design. J Biosci Bioeng. 2019;127:714–20. Rossi SC, Medeiros ABP, Weschenfelder TA, de Paula SA, Soccol CR. Use of pervaporation process for the recovery of aroma compounds produced by P. fermentans in sugarcane molasses. Bioprocess Biosyst Eng. 2017;40:959–67. Kim J-SS, Park J-BB, Jang S-WW, Ha S-JJ. Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl Biochem Biotechnol. 2015;176:1975–84. Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol. 2013;147:449–55. Gírio FM, Roseiro JCC, Sá-Machado P, Duarte-Reis ARR, Amaral-Collaço MTT. Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol. 1994;16:1074–8. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol. 1997;48:218–24. Cheng K-K, Zhang J-A, Ling H-Z, Ping W-X, Huang W, Ge J-P, et al. Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J. 2009;43:203–7. Carvalho GB, Mussatto SI, Cândido EJ, Almeida e Silva JB. Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol. 2006;81:152–7. Kim SY, Kim JH, Oh DK. Improvement of xylitol production by controlling oxygen-supply in Candida parapsilosis. J Ferment Bioeng. 1997;83:267–70. Mussatto SI, Roberto IC. Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol. 2003;95:331–7. Roberto IC, Sato S, De Mancilha IM. Effect of inoculum level on xylitol production from rice straw hemicellulose hydrolysate by Candida guilliermondii. J Ind Microbiol. 1996;16:348–50. Unrean P, Ketsub N. Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind Crops Prod. 2018;123:238–46. Zhang J, Geng A, Yao C, Lu Y, Li Q. Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol. 2012;105:134–41. Ling H, Cheng K, Ge J, Ping W. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. N Biotechnol. 2011;28:673–8. Yewale T, Panchwagh S, Sawale S, Jain R, Dhamole PB. Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech. 2017;7:68. Rodrigues RCLB, Felipe MGA, Roberto IC, Vitolo M. Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess Biosyst Eng. 2003;26:103–7. Silva SS, Roberto IC, Felipe MGA, Mancilha IM. Batch fermentation of xylose for xylitol production in stirred tank bioreactor. Process Biochem. 1996;31:549–53. Faria LFF, Gimenes MAP, Nobrega R, Pereira N. Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. In: Biotechnol Fuels Chem. 2002; pp. 449–58. Walther T, Hensirisak P, Agblevor FA. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol. 2001;76:213–20. Prabhu AA, Gadela R, Bharali B, Deshavath NN, Dasu VV. Development of high biomass and lipid yielding medium for newly isolated Rhodotorula mucilaginosa. Fuel. 2019;239:874–85. Cheng KK, Ling HZ, Zhang JA, Ping WX, Huang W, Ge JP, et al. Strain isolation and study on process parameters for xylose-to-xylitol byconversion. Biotechnol Biotechnol Equip. 2010;24:1606–11. Winston F. EMS and UV mutagenesis in yeast. Curr Protoc Mol Bio. 2008;82:13.3B.1–13.3B.5. Prabhu AA, Thomas DJ, Ledesma-Amaro R, Leeke GA, Medina A, Verheecke-Vaessen C, et al. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica. Microb Cell Fact. 2020;19:121. Prabhu AA, Mandal B, Dasu VV. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: a statistical optimization and neural network-based approach. Korean J Chem Eng. 2017;34:110–1121. Ko BS, Kim JHJ, Kim JHJ. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol. 2006;72:4207–13. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol. 2011;102:3304–8. Su B, Wu M, Zhang Z, Lin J, Yang L. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng. 2015;31:112–22. Rodrigues RCLB, Kenealy WR, Jeffries TW. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol. 2011;38:1649–55. Zhang J, Zhang B, Wang D, Gao X, Hong J. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol. 2014;152:192–201.