Enhanced production of fructose palmitate by lipase-catalyzed esterification in ionic liquids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baker, I. J. A., B. Matthews, H. Suares, I. Krodkiewska, D. N. Furlong, F. Grieser, and C. J. Drummond (2000) Sugar fatty acid ester surfactants: structure and ultimate aerobic biodegradability. J. Surfact. Deterg. 3: 1–11.
Coulon, D. and M. Ghoul (1998) The enzymatic synthesis of non-ionic surfactants: the sugar esters — an overview. Agro Food Ind. Hi-Tech. 9: 22–26.
Ducret, A., A. Giroux, M. Trani, and R. Lortie (1996) Characterization of enzymatically prepared biosurfactants. J. Am. Oil Chem. Soc. 73: 109–113.
Mohamed, G., S. Samia, O. Stéphanie, and E. Jean- Marc (2003) Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids and Surfaces A: Physicochem. Eng. Aspects 227: 35–44.
Kennedy, J. F., H. Kumar, P. S. Panesar, S. S. Marwaha, R. Goyal, A. Parmar, and S. Kaur (2006) Enzymecatalyzed regioselective synthesis of sugar esters and related compounds. J. Chem. Technol. Biotechnol. 81: 866–876.
Liu, Q. B., M. H. A. Janssen, F. van Rantwijk, and R. A. Sheldon (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 7: 39–42.
Earle, M. J. and K. R. Seddon (2000) Ionic liquids-green solvents for the future. Pure Appl. Chem. 72: 1391–1398.
Sheldon, R. A., R. M. Lau, M. J. Sorgedrager, and F. van Rantwijk (2002) Biocatalysis in ionic liquids. Green Chem. 4: 147–151.
Degn, P. and W. Zimmermann (2001) Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol. Bioeng. 74: 483–491.
Ganske, F. and U. T. Bornscheuer (2005) Lipasecatalyzed glucose fatty acid ester synthesis in ionic liquids. Org. Lett. 7: 3097–3098.
Park, S. and R. J. Kazlauskas (2001) Improved preparation and use of room-temperature ionic liquids in lipasecatalyzed enantio- and regioselective acylations. J. Org. Chem. 66: 8395–8401.
Bremner, D. H. (1994) Recent advances in organic synthesis utilizing ultrasound. Ultrasonics Sonochem. 1: S119–S124.
Mason, T. J. and J. P. Lorimer (2002) Applied Sonochemistry — The Uses of Power Ultrasound in chemistry and Processing, pp. 75–119. Wiley-VCH, Weinhein, Germany.
Lee, S. H., D. T. Dang, S. H. Ha, W. J. Chang, and Y. M. Koo (2008) Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids. Biotechnol. Bioeng. 99: 1–8.
Lee, S. H., S. H. Ha, H. M. Nguyen, W. J. Chang, and Y. M. Koo (2008) Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. J. Biotechnol. 133: 486–489.
Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.
Won, K. and S. B. Lee (2002) On-line conversion estimation for solvent-free enzymatic esterification systems with water activity control. Biotechnol. Bioprocess. Eng. 7: 76–84.
Berberich, J. A., J. L. Karr, and A. J. Russell (2003) Use of salt hydrate pairs to control water activity for enzyme catalysis in ionic liquids. Biotechnol. Prog. 19: 1029–1032.
Li, X. F., W. Y. Lou, T. J. Smith, M. H. Zong, H. Wu, and J. F. Wang (2006) Efficient regioselective acylation of 1-β-D-arabinofuranosylcytosine catalyzed by lipase in ionic liquid containing systems. Green Chem. 8: 538–544.