Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases

Nature Communications - Tập 3 Số 1
Kolan Madhav Reddy1, Junjie Guo1, Yasunari Shinoda2, Takeshi Fujita1, Akihiko Hirata1, Jogender Singh3, James W. McCauley3, Mingwei Chen4,1
1WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
2Tokyo Inst. of Tech.
3United States Army Research Laboratory
4State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, M. W., McCauley, J. W. & Hemker, K. J. Shock-induced localized amorphization in boron carbide. Science 299, 1563–1566 (2003).

Thevenot, F. Boron carbide-a comprehensive review. J. Euro. Ceram. Soc. 6, 205–225 (1990).

Bourne, N. K. Shock-induced brittle failure of boron carbide. Proc. R. Soc. Lond. A 458, 1999–2006 (2002).

Domnich, V., Reynaud, S., Haber, R. A. & Chhowalla, M. Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011).

Osipov, A. D. et al. Effect of porosity and grain size on the mechanical properties of hot-pressed boron carbide. Poroshk. Metall. 229, 63–67 (1982).

Schwetz, K. A. & Grellner, W. The influence of carbon on the microstructure and mechanical properties of sintered boron carbide. J. Less. Common. Met. 82, 37–47 (1981).

Yamada, S., Hirao, K., Yamauchi, Y. & Kanzaki, S. High strength B4C-TiB2 composites fabricated by reaction hot-pressing. J. Euro. Ceram. Soc. 23, 1123–1130 (2003).

Sun, S. C. et al. Microstructures and mechanical properties in B4C-CeO2 ceramics. J. Nucl. Mater. 417, 663–667 (2011).

Kim, H. W., Koh, Y. H. & Kim, H. E. The reaction sintering and mechanical properties of B4C with addition of ZrO2 . J. Mater. Res. 5, 2431–2436 (2000).

Pyzik, A. J. & Beaman, D. R. Al-B-C phase development and effects on mechanical properties of B4C/Al-derived composties. J. Am. Ceram. Soc. 78, 305–312 (1995).

Yuhua, Z., Aiju, L., Yansheng, Y., Ruixia, S. & Yingcai, L. Reactive and dense sintering of reinforced-toughened B4C matrix composites. Mater. Res. Bull. 39, 1615–1625 (2004).

Birringer, R. Nanocrystalline materials. Mater. Sci. Engg. A 117, 33–43 (1989).

Ovid'ko, I. A. Deformation of nanostructures. Science 295, 2386 (2002).

Messing, G. L. & Stevenson, A. J. Toward pore-free ceramics. Science 322, 383–384 (2008).

Chen, I. W. & Wang, X. H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168–171 (2000).

Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

Liebling, R. S. Effect of low porosity on the elastic properties of boron carbide. Mat. Res. Bull. 2, 1035–1040 (1967).

Ghosh, D., Subhash, G., Sudarshan, T. S., Radhakrishnan, R. & Gao, X. L. Dynamic indentation response of fine-grained boron carbide. J. Am. Ceram. Soc. 90, 1850–1857 (2007).

Hollenberg, G. W. & Walther, G. The elastic modulus and fracture of boron carbide. J. Am. Ceram. Soc. 63, 610–613 (1980).

Chen, M. W., McCauley, J. W., LaSalvia, J. C. & Hemker, K. J. Microstructural characterization of commercial hot-pressed boron carbide ceramics. J. Am. Ceram. Soc. 88, 1935–1942 (2005).

Domnich, V., Gogotsi, Y., Trenary, M. & Tanaka, T. Nanoindentation and Raman spectroscopy studies of boron carbide single crystals. Appl. Phys. Lett. 81, 3783–3785 (2002).

Laugier, M. T. New formula for indentation toughness in ceramics. J. Mater. Sci. Lett. 6, 355–356 (1987).

Ouchterlony, F. Stress-intensity factors for the expansion loaded star crack. Engg. Fract. Mech. 8, 447–448 (1976).

Lee, H. & Speyer, R. F. Hardness and fracture toughness of pressureless-sintered boron carbide. J. Am. Ceram. Soc. 85, 1291–1293 (2002).

Greim, J. & Schwetz, K. A. Boron carbide, boron nitride and metal borides. Ullmann's Encyclopaedia Ind. Chem. 6, 219–236 (2006).

Ge, D. et al. Structural damage in boron carbide under contact loading. Acta Mater. 52, 3921–3927 (2004).

Harmer, M. P. The phase behaviour of interfaces. Science 332, 182–183 (2011).

Szlufarska, I., Nakano, A. & Vashishta, P. A crossover in the mechnical reponse of nanocrystalline ceramics. Science 309, 911–914 (2005).

Miyazaki, K., Hagio, T. & Koyashi, K. Graphite and boron carbide composties made by hot pressing. J. Mater. Sci. 16, 752–762 (1981).

Paliwal, B. & Ramesh, K. T. Effect of crack growth dynamics on the rate-sensitive behaviour of hot-pressed boron carbide. Scr. Mater. 57, 481–484 (2007).

Chen, M. W., McCauley, J. W., Dandekar, D. P. & Bourne, N. K. Dynamic plasticity and failure of high purity alumina under shock loading. Nat. Mater. 5, 614–618 (2006).

Dokko, P. C. & Pask, J. A. Plastic deformation of ceramic materials. Mater. Sci. Engg. 25, 77–86 (1976).

Krstic, V. D. Porosity dependence of strength in brittle solids. Theor. Appl. Fract. Mec. 10, 241–247 (1988).

Waugh, A. S., Singh, J. P. & Poeppel, R. B. Dependence of ceramic fracture properties on porosity. J. Mater. Sci. 28, 3589–3593 (1993).