Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval

Laser and Photonics Reviews - Tập 15 Số 1 - 2021
Jinpeng Nong1, Linlong Tang2, Guilian Lan1, Peng Luo1, Zhancheng Li2, Deping Huang2, Juemin Yi3, Haofei Shi2, Wei Wei1
1Key Laboratory of Optoelectronic Technology and System, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044 P. R. China
2Chongqing Key Laboratory of Multi-Scale Manufacturing Technology Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 P. R. China
3Institut für Physik Carl von Ossietzky Universität Oldenburg D‐26111 Germany

Tóm tắt

AbstractGraphene plasmons with tightly confined fields and actively tunable resonant frequencies enable the selective detection of molecular vibrational fingerprints with ultrahigh sensitivity, significantly promoting the development of surface‐enhanced infrared absorption spectroscopies (SEIRAS). However, current experimentally obtained enhancements are much smaller than the theoretical prediction due to the extremely low graphene plasmonic mode energy. In this paper, the strategies to improve the mode energy are theoretically and experimentally investigated in a one‐port graphene plasmonic system. By optimizing the Fabry–Pérot cavity length and employing multi‐layer graphene to drive the system into the near critical coupling regime, the localized graphene plasmonic absorptions can be improved from 3% to more than 92%. This induces a 37 times improvement of graphene plasmonic mode energy from 0.4 × 10−13 to 1.5 × 10−12 J per period for the strong plasmon–molecule interactions, enabling the highly sensitive detection of 8 nm thick molecular film. The SEIRAS experimental results demonstrate that a maximum enhancement factor of 162 can be achieved, which is one order larger than that of the reported localized graphene plasmonic sensors. The results showcase the practical usability of localized graphene plasmons for the next‐generation high sensitive nanoscale infrared spectroscopy.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201704896

10.1021/acs.chemrev.6b00743

10.3390/rs8121035

10.1080/23746149.2016.1268931

10.1366/0003702042475420

10.1021/acsphotonics.7b00674

10.1515/nanoph-2017-0005

10.1021/acsphotonics.6b00534

10.1021/acsphotonics.9b00229

10.1021/acsphotonics.8b01050

10.1021/acsphotonics.6b00388

10.1002/adfm.201501151

10.1038/nature11458

10.1038/nnano.2011.252

10.1038/nphoton.2012.262

10.1038/s41566-017-0054-7

10.1021/nn406627u

10.1021/ph400147y

10.1021/acsnano.6b06203

10.1021/acs.nanolett.5b00148

10.1021/acsphotonics.6b00566

10.1103/PhysRevB.90.165409

10.1038/nature11253

10.1021/nl401591k

10.1021/nl404042h

10.1021/acs.nanolett.7b04393

10.1021/acsnano.8b06601

10.1515/nanoph-2016-0126

10.1038/nphoton.2013.57

10.1038/ncomms8032

10.1515/nanoph-2019-0400

10.1038/ncomms12334

10.1038/s41467-019-09008-0

10.1126/science.aab2051

10.1021/nl404824w

10.1021/ph5000117

10.1021/acsphotonics.6b00143

10.1088/1361-6528/aa7453

10.1021/acs.analchem.8b01715

10.1002/smll.201503016

10.1021/acsphotonics.5b00067

10.1021/acsphotonics.7b00547

10.1038/s41565-019-0363-8

Raman A., 2013, Phys. Rev. Lett., 110, 183901, 10.1103/PhysRevLett.110.183901

10.1364/OE.26.006214

10.1021/nl201771h

10.1038/lsa.2016.277

10.1364/OE.24.012202

10.1364/JOSAA.20.000569

10.1364/JOSAB.27.001947

10.1021/ph400090p

Tang L., 2018, Opt. Express, 26, 3709, 10.1364/OE.26.003709

10.1103/PhysRevB.96.165431

10.1103/PhysRevLett.108.047401

10.1117/1.JNP.8.083888

10.1038/srep12423

10.1021/nl501628x

10.1021/acs.nanolett.5b00912