Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations

Journal of Neurophysiology - Tập 111 Số 1 - Trang 4-16 - 2014
Jérémie Gaveau1,2, Bastien Berret3, Laurent Demougeot1,2, Luciano Fadiga4,5, Thierry Pozzo1,6,6,4, Charalambos Papaxanthis1,2
1Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Dijon, France;
2Université de Bourgogne, UFR STAPS, Dijon, France
3UR CIAMS, EA 4532 - Motor Control and Perception Team, Université Paris-Sud 11, Orsay, France
4Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genova, Italy;
5Section of Human Physiology, University of Ferrara, Ferrara, Italy; and
6Institut Universitaire de France (IUF), Paris, France

Tóm tắt

We permanently deal with gravity force. Experimental evidences revealed that moving against gravity strongly differs from moving along the gravity vector. This directional asymmetry has been attributed to an optimal planning process that optimizes gravity force effects to minimize energy. Yet, only few studies have considered the case of vertical movements in the context of optimal control. What kind of cost is better suited to explain kinematic patterns in the vertical plane? Here, we aimed to understand further how the central nervous system (CNS) plans and controls vertical arm movements. Our reasoning was the following: if the CNS optimizes gravity mechanical effects on the moving limbs, kinematic patterns should change according to the direction and the magnitude of the gravity torque being encountered in the motion. Ten subjects carried out single-joint movements, i.e., rotation around the shoulder (whole arm), elbow (forearm), and wrist (hand) joints, in the vertical plane. Joint kinematics were analyzed and compared with various theoretical optimal model predictions (minimum absolute work-jerk, jerk, torque change, and variance). We found both direction-dependent and joint-dependent variations in several kinematic parameters. Notably, directional asymmetries decreased according to a proximodistal gradient. Numerical simulations revealed that our experimental findings could be attributed to an optimal motor planning (minimum absolute work-jerk) that integrates the direction and the magnitude of gravity torque and minimizes the absolute work of forces (energy-related cost) around each joint. Present results support the general idea that the CNS implements optimal solutions according to the dynamic context of the action.

Từ khóa


Tài liệu tham khảo

10.1016/j.cub.2008.04.061

10.1038/nature02754

10.1523/JNEUROSCI.05-09-02318.1985

10.1162/neco.2007.12-05-077

10.2514/1.20478

10.1371/journal.pcbi.1002183

10.1152/jn.01063.2010

10.1371/journal.pcbi.1000194

Berret B, 2008, 38th Annual Meeting of the Society for Neuroscience, Program no. 861.4/JJ18

10.1152/jn.00364.2011

10.1016/j.jbiomech.2010.11.016

10.1152/jn.00428.2011

10.1152/jn.1997.78.1.554

10.1152/jn.00113.2009

10.2106/JBJS.I.01222

10.1016/j.cub.2007.08.051

10.1152/jn.01095.2006

10.1523/JNEUROSCI.05-07-01688.1985

10.1152/jn.01014.2011

10.1016/j.automatica.2010.06.048

Gaveau J, 2009, Progress in Motor Control VII.

10.1152/jn.00081.2011

10.1371/journal.pone.0022045

10.1016/j.neuroscience.2006.11.035

10.1007/978-0-387-77064-2_28

10.1152/jn.1996.76.5.3207

10.1152/jn.1999.82.5.2310

10.1152/jn.00290.2006

10.1038/29528

10.1152/jn.00348.2006

10.1523/JNEUROSCI.13-12-05212.1993

10.1007/BF00353957

10.1016/j.cub.2012.02.048

10.1523/JNEUROSCI.5510-08.2009

10.1523/JNEUROSCI.4003-11.2012

10.1126/science.1107961

10.1523/JNEUROSCI.5359-07.2008

10.1152/jn.00483.2010

10.1016/j.neulet.2007.07.034

10.1007/s00221-009-2081-1

10.1016/j.neuroscience.2005.08.079

10.1038/89477

10.1152/jn.00794.2011

10.1152/jn.1999.81.5.2140

10.1016/0028-3932(71)90067-4

10.1016/S0306-4522(02)00964-8

10.1016/j.neuroscience.2005.06.063

10.1007/s002210050423

10.1007/s00221-002-1327-y

10.1016/S0304-3940(98)00604-1

10.1007/s002210050397

10.1152/jn.00159.2001

10.1016/S0165-0173(98)00030-7

10.1145/1731022.1731032

10.1152/jn.1999.81.3.1045

10.1152/jn.00420.2011

10.1152/jn.00527.2005

10.1523/JNEUROSCI.3886-11.2012

10.1523/JNEUROSCI.14-05-03208.1994

10.1523/JNEUROSCI.15-09-06271.1995

10.1152/jn.1988.59.6.1814

10.1016/j.actaastro.2005.01.016

10.1162/0899766041732431

10.1038/nn1309

10.1038/nn963

10.1007/BF00204593

10.1007/s00221-004-2175-8

Winter D, 1990, Biomechanics and Motor Control of Human Movement

10.1038/81497

10.1007/BF00241505

10.1007/s00221-011-2871-0