Energy levels, lifetimes, and transition probabilities for Sr XXXII

Smadar Attia1
1Department of Physics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt

Tóm tắt

AbstractThe fully relativistic multiconfiguration Dirac–Hartree–Fock (MCDHF) approach was used to calculate the excitation energies and lifetimes for the lowest 272 levels that belonging to the $$2{s}^{2}2{p}^{3}$$ 2 s 2 2 p 3 , $$2s2{p}^{4}$$ 2 s 2 p 4 , $$2{p}^{5}$$ 2 p 5 , $$2{s}^{2}2{p}^{2}3l$$ 2 s 2 2 p 2 3 l , $$2s2{p}^{3}3l$$ 2 s 2 p 3 3 l , and $$2{p}^{4}3l$$ 2 p 4 3 l ($$l=s, p, d$$ l = s , p , d ) configurations for N-like strontium, Sr XXXII, as well as the wavelengths, weighted oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among these levels. The Breit-interaction (BI), and quantum electrodynamics (QED) corrections have been incorporated into the computations. In order to assess the uncertainties of the current calculations, comparisons with available data, and the results from the largest MCDHF layers have all performed.

Từ khóa


Tài liệu tham khảo

Feldman U (1981) The use of spectral emission lines in the diagnostics of hot solar plasmas. Phys Scr 24:681–711. https://doi.org/10.1088/0031-8949/24/4/005

Wouters A, Seely JF, Davé JH, Feldman U, Schwob JL, Suckewer S (1988) Spectra in the 60345-Å wavelength region of the elements Fe, Ni, Zn, Ge, Se, and Mo injected into the Princeton Large Torus tokamak. J Opt Soc Am B 5:1520. https://doi.org/10.1364/josab.5.001520

Raju PK, Dwivedi BN (1990) Emission lines from nitrogen-like ions and their diagnostic use. Astrophys Space Sci 173:13–26. https://doi.org/10.1007/BF00642558

Kink I, Laming JM, Takács E, Porto J, v, Gillaspy JD, Silver E, et al (2001) Analysis of broadband X-ray spectra of highly charged krypton from a microcalorimeter detector of an electron-beam ion trap. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 63:046409. https://doi.org/10.1103/PhysRevE.63.046409

Mohan A, Landi E, Dwivedi BN (2003) On the extreme-ultraviolet/ultraviolet plasma diagnostics for Nitrogen-like ions from spectra obtained by SOHO /SUMER. Astrophys J 582:1162–1171. https://doi.org/10.1086/344823

Kaufman V, Sugar J, Cooper D (1982) N I isoelectronic sequence: Observations of 2sm2pn-2sm-1 2pn+1 intersystem transitions and improved measurements for Cl XI, K XIII, Ca XIV, Sc XV, Ti XVI, and V XVII. Phys Scr 26:163–167. https://doi.org/10.1088/0031-8949/26/3/005

Edlén B (1982) Accurate values of the energy intervals in the configurations 1s22s22pk (k= 1–5). Phys Scr 26:71–83. https://doi.org/10.1088/0031-8949/26/2/003

Edlén B (1984) Comparison of theoretical and experimental level values of the n = 2 configurations in the nitrogen isoelectronic sequence. Phys Scr 30:125–145. https://doi.org/10.1088/0031-8949/30/2/007

Cheng KT, Kim YK, Desclaux JP (1979) Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F. At Data Nucl Data Tables 24:111–189. https://doi.org/10.1016/0092-640X(79)90006-8

Merkelis G, Vilkas MJ, Kisielius R, Gaigalas G, Martinson I (1997) Electric dipole transitions in ions of the N I isoelectronic sequence. Phys Scr 56:41–55. https://doi.org/10.1088/0031-8949/56/1/007

Merkelis G, Martinson I, Kisielius R, Vilkas MJ (1999) Ab initio calculation of electric quadrupole and magnetic dipole transitions in ions of the N I isoelectronic sequence. Phys Scr 59:122. https://doi.org/10.1238/PHYSICA.REGULAR.059A00122

Chen ZB, Wang K, Guo XL (2018) Theoretical determination of energies, wavelengths, and transition rates for the Y30+–Y36+ spectra of fusion interest. J Quant Spectrosc Radiat Transf 220:28–38. https://doi.org/10.1016/j.jqsrt.2018.09.009

Gu MF (2005) Energies of 1s22lq (1≤q≤ 8) states for Z≤60 with a combined configuration interaction and many-body perturbation theory approach. At Data Nucl Data Tables 89:267–293. https://doi.org/10.1016/j.adt.2005.02.004

Zhang HL, Sampson DH (1999) Relativistic distorted-wave collision strengths and oscillator strengths for the 105 Δn = 0 transitions with n=2 in the 81 N-like ions with 12≤Z≤92. At Data Nucl Data Tables 72:153–216. https://doi.org/10.1006/adnd.1999.0812

Fontes CJ, Zhang HL (2014) Relativistic distorted-wave collision strengths for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with 26≤ Z≤ 92. At Data Nucl Data Tables 100:1292–1321. https://doi.org/10.1016/j.adt.2014.02.002

Hao LH, Feng H, Kang XP (2015) Valence and core-valence effects in N-like Kr, Rb and Sr ions. Acta Phys Pol A 127:693–700. https://doi.org/10.12693/APhysPolA.127.693

Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G (2014) Hyperfine structures and Landé gJ-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. At Data Nucl Data Tables 100:1111–1155. https://doi.org/10.1016/j.adt.2014.05.001

Nazé C, Verdebout S, Rynkun P, Gaigalas G, Godefroid M, Jönsson P (2014) Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. At Data Nucl Data Tables 100:1197–1249. https://doi.org/10.1016/j.adt.2014.02.004

Radžiute L, Ekman J, Jönsson P, Gaigalas G (2015) Extended calculations of level and transition properties in the nitrogen isoelectronic sequence: Cr XVIII, Fe XX, Ni XXII, and Zn XXIV. Astron Astrophys 582:61. https://doi.org/10.1051/0004-6361/201526708

Wang K, Li S, Jönsson P, Fu N, Dang W, Guo XL et al (2017) Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX. J Quant Spectrosc Radiat Transf 187:375–402. https://doi.org/10.1016/j.jqsrt.2016.10.011

Wang K, Zhang CY, Jönsson P, Si R, Zhao XH, Chen ZB et al (2018) Extended calculations of energy levels, radiative properties, AJ, BJ hyperfine interaction constants, and Landé gJ-factors for nitrogen-like Ge XXVI. J Quant Spectrosc Radiat Transf 208:134–151. https://doi.org/10.1016/j.jqsrt.2018.01.014

Wang K, Wang Y, Zhang CY, Zhao XH, Chen ZB, Si R et al (2018) Extended calculations of energy levels, radiative properties, AJ, BJ hyperfine interaction constants, and Landé gJ-factors for Nitrogen-like Se XXVIII. J Quant Spectrosc Radiat Transf 220:5–27. https://doi.org/10.1016/j.jqsrt.2018.08.018

Wang K, Chen ZB, Zhao XH, Chen CY, Yan J (2019) Extended calculations of energy levels, radiative properties, and lifetimes for nitrogen-like Zr XXXIV. J Quant Spectrosc Radiat Transf 237:106640. https://doi.org/10.1016/j.jqsrt.2019.106640

El-Sayed F (2021) Energy levels, line strengths, and lifetimes for Mo XXXVI. J Quant Spectrosc Radiat Transf 262:107534. https://doi.org/10.1016/j.jqsrt.2021.107534

Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J (2019) GRASP2018-A Fortran 95 version of the general relativistic atomic structure package. Comput Phys Commun 237:184–187. https://doi.org/10.1016/j.cpc.2018.10.032

Grant IP (2007) Relativistic quantum theory of atoms and molecules. Springer Series on Atomic, Optical, and Plasma Physics

Froese Fischer C, Godefroid M, Brage T, Jönsson P, Gaigalas G (2016) Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J Phys B At Mol Opt Phys 49:182004. https://doi.org/10.1088/0953-4075/49/18/182004

Sturesson L, Jönsson P, Froese Fischer C (2007) JJGEN: a flexible program for generating lists of jj-coupled configuration state functions. Comput Phys Commun 177:539–550. https://doi.org/10.1016/j.cpc.2007.05.013

Gaigalas G, Zalandauskas T, Fritzsche S (2004) Spectroscopic LSJ notation for atomic levels obtained from relativistic calculations. Comput Phys Commun 157:239–253. https://doi.org/10.1016/S0010-4655(03)00518-6

Gaigalas G, Froese Fischer C, Rynkun P, Jönsson P (2017) JJ2LSJ transformation and unique labeling for energy levels. Atoms 5:6. https://doi.org/10.3390/atoms5010006

Kramida A, Ralchenko Yu, Reader J, The NIST ASD Team (2022) NIST Atomic Spectra Database (ver. 5.10). http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD. NIST Atomic Spectra Database