Energy harvesting for the implantable biomedical devices: issues and challenges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Billinghurst M, Starner T: Wearable devices. New ways to manage information. IEEE Journals and Magazines (Computer) 1999,329(1):57–64.
Beeby SP, Tudor MJ: White energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 2006, 17: R175-R195.
Pereyma M: Overview of the Modern State of the Vibration Energy Harvesting Devices. In Proceeding of the International IEEE Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). Ukraine: Lviv-Polyana; 2007:107–112.
Khaligh A, Peng Z, Cong Z: Kinetic energy harvesting using piezoelectric and electromagnetic technologies. IEEE Trans Ind Electron 2010,57(3):850–860.
Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. IEEE J Proc 2004,92(1):76–97.
Torres EO, Rincón GA: A 0.7-μm BiCMOS electrostatic energy-harvesting system IC. IEEE Journals and Magazines 2010,45(2):483–496.
Wojciech MB: Thermal integration of combustion-based energy generators by heat recirculation. Rynek Energy 2010,91(6):108–115.
Schmidt CL, Scott ER: Energy Harvesting and Implantable Medical Devices- First Order Selection Criteria. In Proceeding of the Int. IEEE Conf. of Electron Devices Meeting (IEDM). Washigton, USA; 2011:1051–1054.
Paulo J, Gaspar PD: Review and Future Trend of Energy Harvesting Methods for Portable Medical Devices. In Proceedings of the World Congress on Engineering (WCE). London, U.K; 2010:1–6.
Jaeseok Y, Shwetak N, Patel M, Reynolds S, Gregory AD: Design and performance of an optimal inertial power harvester for human-powered devices. IEEE Trans Mobile Comput 2011,10(5):669–683.
Mitcheson P, Yeatman E, Rao G, Holmes A, Green T: Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 2008,96(9):1457–1486.
Romero E, Warrington RO, Neuman MR: Energy scavenging sources for biomedical sensors. Physiol Meas 2009,30(9):35–62.
Paradiso J, Kymissis J, Kendall C, Gershenfeld N: Parasitic power harvesting in shoes. IEEE Int Sym Wrbl Co 1998, 24: 132–139.
Shenck NS, Paradiso JA: Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 2001,21(3):30–42.
Kornbluh R: Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation, and Smart Structures. In Proceeding of Smart structures and Materials (SPIE). San Diego, USA; 2002:254–270.
Ramsay MJ, Clark WW: Piezoelectric energy harvesting for bio- MEMS applications. In Proceeding of the Smart Structures and Materials (SPIE). Newport Beach, CA, USA; 2001:429–438.
Sohn JW, Choi SB, Lee DY: An investigation on piezoelectric energy harvesting for MEMS power sources. J Mech Eng Sci 2005,219(4):429–436.
Platt SR, Farritor S, Garvin K, Haider H: The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE ASME Trans Mechatron 2005,10(4):455–461.
Hong C, Chen J, Chun Z, Zhihua W, Chunsheng L: Power Harvesting With PZT Ceramics. New Orleans: The Int. IEEE Symposium on Circuits and Systems (ISCAS); 2007:557–560.
Shaban A, Manuel G, Chafiaa H, Eric S, Christian R: Self-powered Instrumented Knee Implant for Early Detection of Postoperative Complications. In Proceeding of the 32nd Annual International Conference of the IEEE (EMBS). Buenos Aires, Argentina; 2010:5121–5124.
Woodson HH, Melcher JR: Electromechanical Dynamics, 1. New York: Wiley; 1968.
Meninger S, Mur-Miranda J, Amirtharajah R, Chandrasakan AP, Lang JH: Vibration to electric energy conversion. IEEE Trans Very Large Scale Integr (VLSI) Syst 2001,9(1):48–53.
Tashiro RN, Kabei K, Katayama Y, Ishizuka F, Tsuboi K, Tsuchiya B: Development of an electrostatic generator that harnesses the motion of a living body. Int J Jpn Soc Mechan Eng 2000, 43: 916–922.
Tashiro RN, Kabei K, Katayama Y, Ishizuka F, Tsuboi K, Tsuchiya B: Development of an electrostatic generator that harnesses the ventricular wall motion. Int J Jpn Soc Artif Organs 2002, 5: 239–245.
Miao P, Mitcheson P, Holmes A, Yeatman E, Green T, Stark B: MEMS inertial power generators for biomedical applications. Microsyst Technol 2006,12(10–11):1079–1083.
Renaud M, Karakaya K, Sterken T, Fiorini P, Hoof CV, Puers R: Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sensor Actuat A-Phys 2008, 145–146: 380–386.
Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Andel VY, Schaijk VR: Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromechan Microeng 2009,19(9):094005.
The world leader in vibration harvester powered wireless sensing system Available, Online. [http://www.perpetuum.com]
Hosaka H: Personal electric power generation technology for portable information equipamention. Micro Mechatronics 2003,47(3):38–46.
Hayakawa M: A study of the new energy system for quartz watches (II). The effective circuit for the system. Congres Europeen de Chronométrie, (C.E.C) 1988, 61–85.
Goto H, Sugiura T, Harada Y, Kazui T: Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput 1999,37(1):377–380.
Amirtharajah R, Chandrakasan A: Self-powered signal processing using vibration-based power generation. IEEE J Solid State Circ 1998,33(5):687–695.
Li W, Ho T, Chan G, Leong P, Wong HY: Infrared signal transmission by a laser-micromachined, vibration-induced power generator. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. Michgan, USA; 2000:236–239.
Williams C, Shearwood C, Harradine M, Mellor P, Birch T, Yates R: Development of an electromagnetic micro-generator. IET J Magazine 2001,148(6):337–342.
Edwar R, Robert OW, Michael RN: Body Motion for Powering Biomedical Devices. In Proceeding of the 31st Annual International Conference of the IEEE (EMBS). Minnesota, Minneapolis, USA; 2009:2752–2755.
Stevens JW: Optimized thermal design of small thermoelectric generators. In Proceeding of the 34th Intersociety Energy Conversion Engineering Conference, Society of Automotive Engineers. Vancouver, (BC); 1999. Paper, 1999–01–2564
Stark I, Stordeur M: New micro thermoelectric devices based on bismuth telluride-type thin solid films. In Proceeding of the 18th Int. Conf. Thermoelectric. Baltimore, MD, USA; 1999:465–472.
Strasser M, Aigner R, Lauterbach C, Sturm TF, Franosch M, Wachutka G: Micromachined CMOS thermoelectric generators as on-chip power supply. Sensor Actuat A-Phys 2004,114(2–3):362–370.
Available, Online. [http://www.powered by thermolife.com], Available, Online. [http://www.poweredbythermolife.com]
Murakawa K, Kobayashi M, Nakamura O, Kawata S: A wireless near-infrared energy system for medical implants. IEEE Eng Med Biol Mag 1999,18(6):70–72.
Goto K, Nakagawa T, Nakamura O, Kawata S: An implantable power supply with an optical rechargeable lithium battery. IEEE Trans Biomed Eng 2001,48(7):830–833.
Grätzel M: Photoelectrochemical cells. Nature (Material, chemical, physics) 2001,414(6861):338–344.
Machi J, Staren ED: Ultrasound for Surgeons. Baltimore, MD: Williams & Wilkins; 2004.
Phillips WB, Towe BC, Larson PJ: An ultrasonically-driven piezoelectric neural stimulator. Proceeding of the 25th IEEE Annual Int. Conf. of Eng, in Medi. and Biology Society (EMBS); 2 2003, 1983–1986.
Tower BC, Larson PJ, Gulick DW: Wireless Ultrasound-Powered Biotelemetry for Implants. In Proceeding of the 31st Annual International Conference of the IEEE (EMBS). Minneapolis, Minnesota, USA; 2009:5421–5424.
Bartsch U, Gaspar J, Paul O: A 2D electret-based resonant micro energy harvester. In Proceeding of the IEEE MEMS. Sorrento, Italy; 2009:1043–1046.
Zhu Y, Moheimani SDR, Yuce MR: Ultrasonic energy transmission and conversion using a 2-D MEMS resonator. IEEE Electron Device Lett 2010,31(4):374–376.
Culurciello E, Andreou AG: Capacitive inter-chip data and power transfer for 3- D VLSI. IEEE Journal and Magazine 2006,53(12):1348–1352.
Canegallo R, Fazzi A, Ciccarelli L, Magagni L, Natali F, Rolandi PL, Jung E, Di Cioccio L, Guerrieri R: 3D capacitive interconnections for high speed interchip communication. In Proceeding of the IEEE Custom Integrated Circuits Conf. (CICC). San, Jose; 2007:1–8.
Fazzi A, Canegallo R, Ciccarelli L, Magagani L, Natali F, Jung E, Rolandi P, Guerrieri R: 3-D capacitive interconnections with monoand bi-directional capabilities. IEEE J Solid-St Circ 2008,43(1):275–284.
Sodagar AM, Amiri P: Capacitive Coupling for Power and Data Telemetry to Implantable Biomedical Microsystems. In Proceedings of the 4th International FrD5.2 IEEE EMBS Conference on Neural Engineering. Antalya, Turkey; 2009:411–414.
Riistama J, Vaisanen J, Heinisuo S, Harjunpa H, Arra S, Kokko K, Antyla M, Kaihilahti J, Heino P, Kellomaki M, Vainio O, Vanhala J, Lekkala J, Hyttinen J: Wireless and inductively powered implant for measuring electrocardiogram. Med Bio Eng Comput 2007,45(12):1163–1174.
Finkenzeller K: Fundamentals and Application in Contact Less Smart Cards; Identification. 2nd edition. 1999.
Meng LH, Yu ST, Oscal TCC: An UHF Passive RFID Transponder Using A low–Power Clock Generate without Passive Components. In Proceeding of the International 49 th. IEEE conf. On Circuits and Systems (MWSCAS). San Juan, Puerto Rico; 2006:11–15.
Sauer C, Stanacevic M, Cauwenberghs G, Thakor N: Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circuits Syst I, Reg Papers 2005,52(12):2605–2613.
Parramon J, Doguet P, Marin D, Verleyssen M, Munoz R, Leija L, Valderrama E: ASIC-based batteryless implantable telemetry microsystem for recording purposes. Proceeding of the IEEE Int. Conf. On Eng. Med. Biol. Soc: 19th Annu 1997, 5: 2225–2228.
John B: Electrical Circuit Theory and Technology. 2nd edition. Oxford: Jordan hill: Elsevier Science; 2003:842–868.
Dorf RC, James AS: Introduction to Electric Circuits. 8th edition. USA: Wiley & Sons Inc; 2010:545–559.
David EJ, John LH, Johnny RJ, Peter DS: Basic Electric Circuit Analysis. 2nd edition. USA: Wiley & Sons; 1999:585–606.
Chan HL, Cheng KWE, Sutanto D: A Simplified Neumann’s Formula for Calculation of Inductance of Spiral Coil. Proceeding of the Int. national IEEE conf. on Power electronics and variable speed Devices 2000. (IEE conf. publ. No. 475), 69–73
Mykolaitis G, Tamasevicius A, Bumeliene S, Bazliauskas A, Lindberg E: Two stage chaotic colpitts for the UHF range. Elektronika Ir Elektrotechnika 2004,4(53):13–15.
Lenarets B, Puers R: Omnidirectional inductive powering for biomedical implants. New York, USA: Springer-Business media B.V; 2009:119–138.
Jow UM, Ghovanloo M: Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans Biomed Circuits Syst 2007,1(3):193–202.
Liu W, Sivaprakasam M, Wang G, Zhou M, Granacki J, Lacoss J, Wills J: Implantable biomimetic microelectronic systems design. IEEE Eng Med Bio Mag 2005,24(5):66–74.
Harrison RR: Designing efficient inductive power links for implantable devices. In Proceedings of IEEE Int. Symp. Circuits and Systems (ISCAS). New Orleans, USA; 2007:2080–2083.
Baker MW, Sarpeshkar R: Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans Biomed Circuits Syst 2007,1(1):28–38.
Van SK, Puers R: Inductive Powering, Basic Theory and Application to Biomedical Systems. New York, USA: Springer; 2009.
Xue RF, Cheng KW, Je M: High efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans Biomed Circuits Syst-1: Regular Papers 2013,60(4):867–874.
Hannan M, Mutashar S, Salina A, Aini H: Modulation techniques for biomedical implanted devices and their challenges. Sensors 2012, 12: 297–319.
Lenaerts B, Puers R: An inductive power link for a wireless endoscope. Biosens Bioelectron 2007,22(7):1390–1395.
Silay K, Dondi D, Larcher L, Declercq M, Benini L, Leblebici Y, Dehollain C: Load optimization of an inductive power link for remote powering of biomedical implants. In Proceeding of the IEEE Int. Symp. Circuits and Systems. Taipei, Taiwan; 2009:533–536.
Catrysse M, Hermans B, Puers R: An inductive power system with integrated bi-directional data-transmission. Sensor Actuat A-Phys 2004,115(2–3):221–229.
Sodagar AM, Wise KD, Najafi K: A wireless implantable microsystem for multi channel neural recording. IEEE Trans Microw Theory Tech 2009,57(10):2565–2573.
Seung BL, Hyung-Min L, Kiani M, Uei-Ming J, Ghovanloo M: An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 2010,4(6):360–371.
Karalis A, Joannopoulos J, Soljacic M: Efficient wireless nonradiative midrange energy transfer. Ann Phys 2008, 323: 34–48.
Kurs A, Karalis A, Mofatt R, Joannopoulos JD, Fisher P, Soljacic M: Wireless power transfer via strongly coupled magnetic resonances. Science 2007,317(5834):83–86.
Cannon BL, Hoburg JF, Stancil DD, Goldstein SC: Magnetic resonant coupling as a potentialmeans for wireless power transfer to multiple small receivers. IEEE Trans Power Electron 2009,24(7):1819–1825.
Sample AP, Meyer DA, Smith JR: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron 2011,58(2):544–554.
Ramrakhyani AK, Mirabbasi S, Chiao M: Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 2011,5(1):48–63.
Kiani M, Jow UM, Ghovanloo M: Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans Biomed Circuits Syst 2011,5(6):579–591.
Chen CJ, Chu TH, Lin CL, Jou ZC: A study of loosely coupled coils for wireless power transfer. IEEE Trans Circuits Syst. II, Exp Briefs 2010,57(7):536–540.
Akin T, Najafi K, Bradley R: A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J Solid-St Circ 1998,33(1):109–118.
Ahmadi M, Jullien G: A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans Biomed Circuits Syst 2009,3(3):169–180.
O’Driscoll S, Poon ASY, Meng TH: A mm-sized implantable power receiver with adaptative link compensation. In Proceedings of the IEEE Tech. Dig. Int. Solid-State Circuits Conference. Pennsylvania, USA; 2009:294–295.
Luis A, Rui FX, Kuang WC, Minkyu J: Closed loop wireless power transmission for implantable medical devices. In Proceedings of the IEEE 13th Int. Conf. On Integrated Circuits (ISIC). Singapore; 2011:404–407.
Meysam Z, Glenn P: Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Trans Biomed Circuits Syst 2012,6(3):228–245.
Xiuhan LZ, Hanru L, Yang Y, Tianyang WB, Dongming F: A wireless magnetic resonance energy transfer system for micro implantable medical sensors. Sensors 2012, 12: 10292–10308.
Mohan SS, Maria HM, Body SP, Lee TH: Simple accurate expressions for planar spiral inductances. IEEE J Solid-St Circ 1999,34(10):1419–1424.
Mutashar S, Hannan MA, Salina AS, Hussain A: Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices. J Biomed Eng 2014,59(3):257–268.
Klaus F, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. 2nd edition. Piscataway, NJ, USA: Wiley & Sons; 2003.
Zierhofer CM, Hochmair IJ, Hochmair ES: Electronic design of a cochlear implantant for multi-channel high rate pulsatle stimulation strategies. IEEE Trans Rehab Eng 1995, 3: 112–116.
Juanola EF, Colomer JF, Samitier J, Miribel PC, Valls JP: Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis. Nanotechnology (Elsevier) 2012,32(3–4):193–204.