Endothelin-1 induces neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2 in mice

Canadian Journal of Physiology and Pharmacology - Tập 90 Số 2 - Trang 187-199 - 2012
Ana C. Zarpelon1, Larissa G. Pinto2, Thiago M. Cunha2, Sílvio M. Vieira2, Vanessa Carregaro3,2, Guilherme R. Souza2, João S. Silva3, S. H. Ferreira2, Fernando Q. Cunha2, Waldiceu A. Verri1
1Departamento de Patologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR445 KM380, 86051-990, Londrina, Parana, Brazil.
2Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14050-990, Ribeirao Preto, Sao Paulo, Brazil.
3Department of Immunology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, 14050-990, Ribeirao Preto, São Paulo, Brazil.

Tóm tắt

Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor α (TNFα), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ETA/ETBreceptor antagonist bosentan, and selective ETAor ETBreceptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFα and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1+markers in the granulocyte gate, CD11c+markers in the monocyte gate, and CD4+and CD45+(B220) markers in the lymphocyte gate in an ETA- and ETB-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2-dependent mechanism.

Từ khóa


Tài liệu tham khảo

10.1016/0006-291X(92)92302-E

10.1016/j.diabres.2003.09.011

Bertelli A., 1992, Int. J. Tissue React., 14, 225

10.1097/00075198-200104000-00009

10.1038/sj.bjp.0704403

10.1189/jlb.1107797

10.1189/jlb.1207827

Coulombe M., 2002, J. Leukoc. Biol., 71, 829, 10.1189/jlb.71.5.829

10.1038/bjp.2008.94

10.1189/jlb.0907654

Cunningham P.N., 2002, J. Immunol., 168, 5817, 10.4049/jimmunol.168.11.5817

10.1016/j.tips.2007.10.002

10.1016/0006-2952(94)90356-5

10.1016/0009-2797(96)03725-8

10.1152/ajpregu.00532.2004

Ferrante A., 1993, J. Immunol., 151, 4821, 10.4049/jimmunol.151.9.4821

10.1097/00005344-198900135-00065

10.1016/0006-291X(90)90685-G

Gamze K., 2007, Exp. Mol. Med., 39, 614, 10.1038/emm.2007.67

10.1124/jpet.104.065573

Griswold D.E., 1999, Mol. Pharmacol., 56, 807

10.1189/jlb.0207123

10.1182/blood-2003-10-3559

10.1038/sj.bjp.0703691

10.1155/S0962935193000596

Imhof A.K., 2011, Arthritis Res. Ther., 13, R97, 10.1186/ar3372

10.1073/pnas.86.8.2863

10.1016/S0006-291X(05)80061-0

10.1016/j.ejphar.2004.10.038

10.1038/nm1248

Karumuthil-Melethil S., 2008, J. Immunol., 181, 8323, 10.4049/jimmunol.181.12.8323

10.1016/0014-5793(91)80214-N

10.1016/j.peptides.2009.01.011

10.1136/ard.51.6.797

10.1016/j.pain.2009.11.006

10.1139/y97-057

10.1007/s001090050363

Ruetten H., 1997, J. Physiol. Pharmacol., 48, 675

10.1007/s000110050577

10.1189/jlb.1003504

10.1016/0006-291X(91)91461-K

10.1016/j.coph.2010.01.005

10.1038/sj.bjp.0707640

Trentin P.G., 2006, Exp. Biol. Med. (Maywood), 231, 1146

10.1016/j.ejphar.2007.01.029

10.1111/j.1476-5381.2009.00325.x

10.1073/pnas.0603286103

10.1002/eji.200737488

10.1073/pnas.0712116105

10.1007/s00210-008-0360-1

10.1136/ard.2009.122655

10.1111/j.1476-5381.2009.00367.x

Wahl J.R., 2005, Exp. Biol. Med. (Maywood), 230, 652, 10.1177/153537020523000907

10.1002/art.1780350807

10.1016/0014-2999(94)90217-8

10.1038/332411a0

10.1007/s00403-010-1102-z