Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix

Applied Biochemistry and Biotechnology - Tập 176 - Trang 170-184 - 2015
Lu Ren1, Shaozhou Zhu1, Ying Shi1, Shuahua Gao1, Guojun Zheng1
1State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China

Tóm tắt

A thermostable formamidase from the aerobic hyperthermophilic archaeon Aeropyrum pernix was revealed a novel type II (+)-γ-lactamase. This type II (+)-γ-lactamase is only composed of 377 amino acid residues, in contrast to another thermostable (+)-γ-lactamase from Sulfolobus solfataricus with 504 amino acid residues (type I). It is interesting that there are low identities between these two (+)-γ-lactamases, and herein, we further proved that at least two types of (+)-γ-lactamases exist in nature due to enzyme promiscuity. The gene of this thermostable (+)-γ-lactamase was cloned, functionally expressed in Escherichia coli BL21, and purified by a simple yet effective heat treatment method. It showed incredible thermostability, retaining 100 % of its activity after 12 h at 100 °C. The optimum temperature for this enzyme was supposed to be more than 100 °C, and the optimum pH for this enzyme was about 9.0. The lactamase maintained its activity in the presence of most metal ions, except for Cu2+. This thermo- and alkaline-tolerant (+)-γ-lactamase presents promising properties for the industrial application. Specifically, it could be used for the production of chirally pure (−)-γ-lactam for the synthesis of well-known carbocyclic nucleosides like abacavir and peramivir. The optical purity of the chiral product reached over 97 % enantiomeric excess.

Tài liệu tham khảo

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201. Cilia, E., Fabbri, A., Uriani, M., Scialdone, G. G., & Ammendola, S. (2005). FEBS Journal, 272, 4716–4724. Connelly, S., Line, K., Isupov, M. N., & Littlechild, J. A. (2005). Organic & Biomolecular Chemistry, 3, 3260–3262. d’Abusco, A., Ammendola, S., Scandurra, R., & Politi, L. (2001). Extremophiles, 5, 183–192. Demirjian, D. C., Morı́s-Varas, F., & Cassidy, C. S. (2001). Current Opinion in Chemical Biology, 5, 144–151. Egorova, K., & Antranikian, G. (2005). Current Opinion in Microbiology, 8, 649–655. Gao, R., Feng, Y., Ishikawa, K., Ishida, H., Ando, S., Kosugi, Y., & Cao, S. (2003). Journal of Molecular Catalysis B: Enzymatic, 24–25, 1–8. Hickey, A. M., Ngamsom, B., Wiles, C., Greenway, G. M., Watts, P., & Littlechild, J. A. (2009). Biotechnology Journal, 4, 510–516. Hirakawa, H., Kamiya, N., Kawarabayashi, Y., & Nagamune, T. (2004). Journal of Bioscience and Bioengineering, 97, 202–206. Ohtaki, A., Murata, K., Sato, Y., Noguchi, K., Miyatake, H., Dohmae, N., Yamada, K., Yohda, M., & Odaka, M. (2010). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804, 184–192. Patel, R. N. (2008). Coordination Chemistry Reviews, 252, 659–701. Qin, X., Wang, J., & Zheng, G. (2010). Applied Biochemistry and Biotechnology, 162, 2345–2354. Rasor, J. P., & Voss, E. (2001). Applied Catalysis A: General, 221, 145–158. Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T., & Maruyama, T. (1996). International Journal of Systematic Bacteriology, 46, 1070–1077. Staszewski S, K. P. M. J. & et al. (2001). JAMA: The Journal of the American Medical Association, 285, 1155–1163. Taylor, S. J. C., Brown, R. C., Keene, P. A., & Taylor, I. N. (1999). Bioorganic & Medicinal Chemistry, 7, 2163–2168. Taylor, S. J. C., McCague, R., Wisdom, R., Lee, C., Dickson, K., Ruecroft, G., O’Brien, F., Littlechild, J., Bevan, J., Roberts, S. M., & Evans, C. T. (1993). Tetrahedron: Asymmetry, 4, 1117–1128. Toogood, H., Hollingsworth, E., Brown, R., Taylor, I., Taylor, S., McCague, R., & Littlechild, J. (2002). Extremophiles, 6, 111–122. Toogood, H. S., Brown, R. C., Line, K., Keene, P. A., Taylor, S. J. C., McCague, R., & Littlechild, J. A. (2004). Tetrahedron, 60, 711–716. Toogood, H. S., Taylor, I. N., Brown, R. C., Taylor, S. J. C., McCague, R., & Littlechild, J. A. (2002). Biocatalysis and Biotransformation, 20, 241–249. Torres, L. L., Schlie, Schmidt, M., Silva-Martin, N., Hermoso, J. A., Berenguer, J., Bornscheuer, U. T. & Hidalgo, A. (2012). Organic & Biomolecular Chemistry, 10, 3388–3392. Wang, J., Zhang, X., Min, C., Wu, S., & Zheng, G. (2011). Process Biochemistry, 46, 81–87. Willies, S., Isupov, M., & Littlechild, J. (2010). Environmental Technology, 31, 1159–1167. Yu, Y., Garg, S., Yu, P. A., Kim, H.-J., Patel, A., Merlin, T., Redd, S., & Uyeki, T. M. (2012). Clinical Infectious Diseases, 55, 8–15. Zhu, S., Gong, C., Ren, L., Li, X., Song, D., & Zheng, G. (2013). Applied Microbiology and Biotechnology, 97, 837–845. Zhu, S., Gong, C., Song, D., Gao, S., & Zheng, G. (2012). Applied and Environmental Microbiology, 78, 7492–7495. Zhu, S., Song, D., Gong, C., Tang, P., Li, X., Wang, J., & Zheng, G. (2013). Applied Microbiology and Biotechnology, 97, 6769–6778.