Empirical orthogonal functions and related techniques in atmospheric science: A review

International Journal of Climatology - Tập 27 Số 9 - Trang 1119-1152 - 2007
Abdel Hannachi1, Ian T. Jolliffe1, David B. Stephenson1
1Department of Meteorology, University of Reading, Reading RG6 6BB, UK

Tóm tắt

Abstract

Climate and weather constitute a typical example where high dimensional and complex phenomena meet. The atmospheric system is the result of highly complex interactions between many degrees of freedom or modes. In order to gain insight in understanding the dynamical/physical behaviour involved it is useful to attempt to understand their interactions in terms of a much smaller number of prominent modes of variability. This has led to the development by atmospheric researchers of methods that give a space display and a time display of large space‐time atmospheric data.

Empirical orthogonal functions (EOFs) were first used in meteorology in the late 1940s. The method, which decomposes a space‐time field into spatial patterns and associated time indices, contributed much in advancing our knowledge of the atmosphere. However, since the atmosphere contains all sorts of features, e.g. stationary and propagating, EOFs are unable to provide a full picture. For example, EOFs tend, in general, to be difficult to interpret because of their geometric properties, such as their global feature, and their orthogonality in space and time. To obtain more localised features, modifications, e.g. rotated EOFs (REOFs), have been introduced. At the same time, because these methods cannot deal with propagating features, since they only use spatial correlation of the field, it was necessary to use both spatial and time information in order to identify such features. Extended and complex EOFs were introduced to serve that purpose.

Because of the importance of EOFs and closely related methods in atmospheric science, and because the existing reviews of the subject are slightly out of date, there seems to be a need to update our knowledge by including new developments that could not be presented in previous reviews. This review proposes to achieve precisely this goal. The basic theory of the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided. Copyright © 2007 Royal Meteorological Society

Từ khóa


Tài liệu tham khảo

10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2

10.1175/1520-0442(2002)015<0553:C>2.0.CO;2

10.1214/aoms/1177704248

Anderson TW, 1984, An Introduction to Multivariate Statistical Analysis

10.1175/1520-0469(1983)040<1584:TLHSOD>2.0.CO;2

10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2

10.2307/519964

10.1029/1999RG000073

10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2

10.1175/1520-0493(1984)112<2380:IOTMAP>2.0.CO;2

10.1175/1520-0493(1984)112<2388:IOTMAP>2.0.CO;2

10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

10.2307/2286324

10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

BjörnssonH VenegasSA.1997.A Manual for EOF and SVD Analyses of Climate Data. Report No 97‐1 Department of Atmospheric and Oceanic Sciences and Centre for Climate and Global Change Research McGill University.52.

Bibby J, 1980, Some effects of rounding optimal estimates, Sankhya B, 42, 165

10.1002/joc.3370140706

10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO;2

10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2

Brillinger DR, 1981, Time Series‐Data: Analysis and Theory

10.1029/JC091iC01p00877

10.1016/0167-2789(86)90031-X

Broomhead DS, 1986, Nonlinear Phenomena and Chaos, 113

10.1029/96JD01611

10.1007/BF02289025

10.2307/2987365

Chatfield C, 1989, Introduction to Multivariate Analysis

10.1175/1520-0493(1993)121<2631:IOEEOF>2.0.CO;2

10.1175/1520-0442(1995)008<1709:ROLFCP>2.0.CO;2

10.1007/s00382-006-0195-8

10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2

10.1002/qj.49708637011

10.1007/978-1-4757-2514-8

10.1175/1520-0469(1986)043<0419:ETDOWA>2.0.CO;2

10.1109/T-C.1970.222918

Fukuoka A, 1951, A Study of 10‐day Forecast (A Synthetic Report), 177

10.1175/JCLI3337.1

Ghil M, 2002, Advanced spectral methods for climatic time series, Reviews of Geophysics, 40, 1.1, 10.1029/2000RG000092

Girshick MA, 1939, On the sampling theory of roots of determinantal equations, Annals of Mathematical Statistics, 43, 128

Golub GH, 1996, Matrix Computation

10.1201/9781420035841

Graybill FA, 1969, Introduction to Matrices with Application in Statistics

Graystone P, 1959, Meteorological office discussion‐tropical meteorology, Meteorological Magazine, 88, 113

10.1207/s15327906mbr1203_1

10.1002/joc.1375

10.1002/joc.1243

10.1002/qj.49712757312

10.1002/9780470316429

10.1175/1520-0450(1978)017<1153:PCAOVW>2.0.CO;2

Harman HH, 1976, Modern Factor Analysis

Hausmann R, 1982, Optimisation in Statistics, 137

Heinlein RA, 1973, Time Enough for Love

10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2

Hirsch MW, 1974, Differential Equations, Dynamical Systems, and Linear Algebra

Holton JR, 1992, An Introduction to Dynamic Meteorology

10.1175/1520-0493(1981)109<2080:ARPCAO>2.0.CO;2

10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2

10.1037/h0071325

10.1037/h0058165

10.1034/j.1600-0870.2001.00251.x

10.1029/96GL00459

10.1029/134GM01

10.1016/S0893-6080(00)00026-5

10.1002/0471725331

Jenkins JM, 1968, Spectral Analysis and its Applications

10.1007/BF02294840

10.1007/BF02294706

10.1175/1520-0485(1993)023<0608:SOIKWI>2.0.CO;2

10.1002/joc.3370070506

10.1080/757584395

Jolliffe IT, 2002, Principal Component Analysis

10.3354/cr020271

10.1198/1061860032148

10.1007/BF02289233

10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

10.1007/978-1-4612-0823-5

10.1007/BF02294392

10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2

10.1175/1520-0469(1996)053<1007:EOODCT>2.0.CO;2

10.1175/1520-0442-12.1.185

10.1175/1520-0442(1999)012<2076:EBLPAE>2.0.CO;2

Kimoto M, 1991, Proceedings of the 8th Conference on Atmospheric and Oceanic waves and Stability, 115

10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2

10.1002/zamm.19700500125

10.1256/qj.02.151

Krzanowski WJ, 2000, Principles of Multivariate Analysis: A User's Perspective, 10.1093/oso/9780198507086.001.0001

10.1175/1520-0485(1976)006<0181:STDCOL>2.0.CO;2

10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2

10.1007/978-3-642-58541-8

10.1093/biomet/43.1-2.128

10.1175/1520-0442(1991)004<0753:AVOAZS>2.0.CO;2

10.1007/978-1-4612-6257-2

LorenzEN.1956.Empirical Orthogonal Functions and Statistical Weather Prediction. Technical report Statistical Forecast Project Report 1 Dep of Meteor MIT:49.

10.1175/1520-0450(1970)009<0325:CCAAMP>2.0.CO;2

10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2

10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2

Magnus JR, 1995, Matrix Differential Calculus with Applications in Statistics and Econometrics

Mardia KV, 1979, Multivariate Analysis

10.2467/mripapers.48.1

10.1002/qj.49712656902

10.1029/JC094iC12p18133

10.1175/1520-0485(1990)020<1628:DPSWCE>2.0.CO;2

10.1002/1097-0088(200010)20:12<1509::AID-JOC553>3.0.CO;2-Q

10.1175/1520-0442(2001)013<0219:NPCATI>2.0.CO;2

10.1080/07055900.1999.9649628

Morrison DF, 1976, Multivariate Statistical Methods

10.1175/1520-0469(1984)041<0879:EOFANM>2.0.CO;2

10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2

Obukhov AM, 1947, Statistically homogeneous fields on a sphere, Uspethi Mathematicheskikh Nauk, 2, 196

Obukhov AM, 1960, The statistically orthogonal expansion of empirical functions, Bulletin of the Academy of Sciences of the USSR. Geophysics Series (English Transl.), 1, 288

10.1175/1520-0493(1982)110<0001:ASTFPC>2.0.CO;2

10.1002/j.1477-8696.1954.tb01707.x

10.1175/JCLI3352.1

10.1002/qj.49712656708

10.1080/14786440109462720

10.1175/1520-0442(1996)009<1824:TCPBSL>2.0.CO;2

10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2

Preisendorfer RW, 1988, Principal Component Analysis in Meteorology and Oceanography

Priestley MB, 1981, Spectral Analysis of Time Series

10.1007/978-1-4757-7107-7

10.1175/1520-0493(1981)109<0587:BVISTO>2.0.CO;2

10.1029/JZ066i003p00813

Reyment RA, 1996, Applied Factor Analysis in the Natural Sciences

10.1175/1520-0450(1981)020<1145:ORPCAI>2.0.CO;2

10.1002/joc.3370060305

10.1002/joc.3370070507

10.1038/43854

10.1175/1520-0469(1983)040<0788:MOVIAH>2.0.CO;2

Seal HL, 1967, Multivariate Statistical Analysis for Biologists

10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2

SunL.2005.Simple Principal Components. PhD thesis. Department of Statistics Faculty of Mathematics and Computing The Open University Milton Keynes.

Takens F, 1981, Dynamical Systems and Turbulence. Lecture Notes in Mathematics 898, 366

10.1034/j.1600-0870.1996.t01-3-00007.x

Thiiébaux HJ, 1984, The interpretation and estimation of effective sample sizes, Journal of Climate and Applied Meteorology, 23, 800, 10.1175/1520-0450(1984)023<0800:TIAEOE>2.0.CO;2

Thomas JB, 1969, An Introduction to Statistical Communication Theory

10.1029/98GL00950

10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2

Tibshirani R, 1996, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society B, 58, 267

10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2

10.1175/1520-0493(1984)112<0761:QBFISL>2.0.CO;2

10.1016/j.csda.2004.07.017

10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2

10.1016/0167-2789(92)90103-T

10.1111/1467-9876.00204

von Storch H, 1995, Analysis of Climate Variability: Application of Statistical Techniques, 227, 10.1007/978-3-662-03167-4_13

10.1017/CBO9780511612336

10.1175/1520-0442(1995)008<0377:POPAR>2.0.CO;2

10.1175/1520-0450(1972)011<0893:EOROTS>2.0.CO;2

10.1175/1520-0450(1972)011<0887:EOROTS>2.0.CO;2

10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

10.1175/1520-0442(2002)015<1987:TPCOAO>2.0.CO;2

10.1175/1520-0493(1981)109<0767:SITABS>2.0.CO;2

10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2

10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2

10.2307/2153449

Whittle P, 1951, Hypothesis Testing in Time Series

Wilks DS, 2006, Statistical Methods in the Atmospheric Sciences

10.1175/1520-0442(1995)008<2631:OROSPD>2.0.CO;2