Emerging techniques applied to by-products for food fortification

Springer Science and Business Media LLC - Tập 57 - Trang 905-914 - 2019
Valeria Marinelli1, Sara Spinelli1, Luisa Angiolillo1, Matteo Alessandro Del Nobile1, Amalia Conte1
1Department of Agricultural Sciences, Food and Environment, University of Foggia, Foggia, Italy

Tóm tắt

Considering the increasing consumer demand for healthy food, the extract from broccoli by-products was studied. To this aim, in the first step, three extraction techniques were compared in terms of extraction efficiency. The best method was the pressurized liquid extraction. Then, the extract microencapsulation was optimized in terms of type of wall material (between Capsul and maltodextrins), concentration of wall material (10–20–30%, w/v), core/wall material ratio (1:2, 1:5, 1:10, 1:20) and inlet temperature (80, 100, 130, 150, 170 °C). The optimal conditions were found with 10% maltodextrins as wall material, core/wall material ratio 1/2 at 80 °C. Finally, the obtained microencapsulated extract was added at 5% (w/w) to fish burgers. Results demonstrated that total phenolic content, total flavonoids and antioxidant activity of enriched fish products were significantly higher than the control burgers, thus confirming that both process and cooking did not greatly affect the nutritional properties of extracted compounds.

Tài liệu tham khảo

Aburto LC, Tavares DQ, Martucci ET (1998) Microencapsulação de óleo essencial de laranja. Food Sci Technol (Campinas) 18:45–48 Arana-Sánchez A, Estarrón-Espinosa M, Obledo-Vázquez EN, Padilla-Camberos E, Silva-Vázquez R, Lugo-Cervantes E (2010) Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett Appl Microbiol 50:585–590. https://doi.org/10.1111/j.1472-765X.2010.02837 Ares AM, Bernal J, Nozal MJ, Turner C, Plaza M (2015) Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 76:498–505 Arnaiz E, Bernal J, Martin MT, Nozal MJ, Bernal JL, Toribio L (2012) Supercritical fluid extraction of free amino acids from broccoli leaves. J Chromatogr A 1250:49–53. https://doi.org/10.1016/j.chroma.2012.04.066 Arnáiz E, Bernal J, Martín MT, Diego JC, Bernal JL, Recio LT (2016) Optimisation of the supercritical fluid extraction of antioxidants from broccoli leaves. Food Anal Methods 9:2174–2181. https://doi.org/10.1007/s12161-016-0399-4 Bakowska-Barczak AM, Kolodziejczyk PP (2011) Black currant polyphenols: their storage stability and microencapsulation. Ind Crops Prod 34:1301–1309. https://doi.org/10.1016/j.indcrop.2010.10.002 Biney K, Beta T (2014) Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT Food Sci Technol 57:569–579. https://doi.org/10.1016/j.lwt.2014.02.033 Böger BR, Geogetti SR, Koruzawa LE (2018) Microencapsulation of grape seed oil by spray drying. Food Sci Technol 38:263–270. https://doi.org/10.1590/fst.04417 Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus Betacyanin pigments. J Food Sci 65:1248–1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x Casazza AA, Aliakbarian B, Mantegna S, Cravotto G, Perego P (2010) Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J Food Eng 100:50–55. https://doi.org/10.1016/j.jfoodeng.2010.03.026 Cheah ELC, Heng PWS, Chan LW (2010) Optimization of supercritical fluid extraction and pressurized liquid extraction of active principles from Magnolia officinalis using the Taguchi design. Sep Purif Technol 71:293–301. https://doi.org/10.1016/j.seppur.2009.12.009 Djilas S, Čanadanović-Brunet J, Ćetković G (2009) By-products of fruits processing as a source of phytochemicals. Chem Ind Chem Eng Q 15:191–202 Domínguez-Perles R, Martínez-Ballesta MC, Carvajal M, García-Viguera C, Moreno DA (2010) Broccoli-derived by-products—a promising source of bioactive. J Food Sci 75:C383–C392 Gonzalez-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rossello C, Femenia A (2014) Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—a response surface approach. Ultrason Sonochem 21:2176–2184 Goula AM, Adamopoulos KG (2011) Optimization of lycopene microencapsulation by spray drying. In: Paper presented at the ICEF 11-international congress on engineering and food, Athens, Greece Herrero M, Cifuentes A, Ibánez E (2006) Sub- and supercritical fluid extraction offunctional ingredients from different natural sources: plants, food-by-products, algae and microalgae—a review. Food Chem 98:136–148 Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511 Hogan SA, McNamee BF, O’Riordan ED, O’Sullivan M (2001) Microencapsulating properties of sodium caseinate. J Agric Food Chem 49:1934–1938. https://doi.org/10.1021/jf000276q Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol 26:816–835. https://doi.org/10.1080/07373930802135972 Liazid A et al (2010) Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food Bioprod Process 88:247–252. https://doi.org/10.1016/j.fbp.2009.11.004 Marinelli V, Padalino L, Nardiello D, Del Nobile MA, Conte A (2015) New approach to enrich pasta with polyphenols from grape marc. J Chem 2015:8. https://doi.org/10.1155/2015/734578 Maróstica Junior MR, Leite AV, Romanelli V, Dragano N (2010) Supercritical fluid extraction and stabilization of phenolic compounds from natural sources—review (supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J 4:51–60 Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG (2001) Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res PTR 15:127–130 Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18 Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M (2015) Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem 187:507–516. https://doi.org/10.1016/j.foodchem.2015.04.081 O’Shea N, Arendt EK, Gallagher E (2012) Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov Food Sci Emerg Technol 16:1–10 Otero-Pareja MJ, Casas L, Fernandez-Ponce MT, Mantell C, Martinez de la Ossa EJ (2015) Green extraction of antioxidants from different varieties of red grape pomace. Molecules (Basel, Switzerland) 20:9686–9702. https://doi.org/10.3390/molecules20069686 Quek SY, Chok NK, Swedlund P (2007) The physicochemical properties of spray-dried watermelon powders. Chem Eng Process 46:386–392. https://doi.org/10.1016/j.cep.2006.06.020 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237 Reineccius GA, Bangs WE (1985) Spray drying of food flavors. III. Optimum infeed concentrations for the retention of artificial flavors. Perfum Flavorist 9(2):27–29 Rosenberg M, Kopelman IJ, Talmon Y (1990) Factors affecting retention in spray-drying microencapsulation of volatile materials. J Agric Food Chem 38:1288–1294. https://doi.org/10.1021/jf00095a030 Sansone F, Mencherini T, Picerno P, d’Amore M, Aquino RP, Lauro MR (2011) Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng 105:468–476. https://doi.org/10.1016/j.jfoodeng.2011.03.004 Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669. https://doi.org/10.1016/j.jfoodeng.2005.05.062 Silva PI, Stringheta PC, Teófilo RF, de Oliveira IRN (2013) Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. J Food Eng 117:538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039 Spinelli S, Conte A, Lecce L, Padalino L, Del Nobile MA (2016) Supercritical carbon dioxide extraction of brewer’s spent grain. J Supercrit Fluids 107:69–74. https://doi.org/10.1016/j.supflu.2015.08.017 Tao Y, Zhang Z, Sun DW (2014) Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature. Ultrason Sonochem 21:1461–1469 Tonon RV, Freitas SS, Hubinger MD (2011) Spray drying of açai (Euterpe Oleraceae mart.) juice: effect of inlet air temperature and type of carrier agent. J Food Process Preserv 35:691–700. https://doi.org/10.1111/j.1745-4549.2011.00518.x Wu Y, Zou L, Mao J, Huang J, Liu S (2014) Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohyd Polym 102:497–503. https://doi.org/10.1016/j.carbpol.2013.11.057 Zakarian JA, King CJ (1982) Volatiles loss in the nozzle zone during spray drying of emulsions. Ind Eng Chem Process Des Dev 21:107–113. https://doi.org/10.1021/i200016a019