Emerging concept for the role of photorespiration as an important part of abiotic stress response

Plant Biology - Tập 15 Số 4 - Trang 713-722 - 2013
Ingo Voß1, Bobba Sunil2, Renate Scheibe1, Agepati S. Raghavendra2
1Lehrstuhl Pflanzenphysiologie Fachbereich Biologie/Chemie Universität Osnabrück Osnabrück Germany
2Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India

Tóm tắt

AbstractWhen plants are exposed to stress, generation of reactive oxygen species (ROS) is often one of the first responses. In order to survive, cells attempt to down‐regulate the production of ROS, while at the same time scavenging ROS. Photorespiration is now appreciated as an important part of stress responses in green tissues for preventing ROS accumulation. Photorespiratory reactions can dissipate excess reducing equivalents and energy either directly (using ATP, NAD(P)H and reduced ferredoxin) or indirectly (e.g., via alternative oxidase (AOX) and providing an internal CO2 pool). Photorespiration, however, is also a source of H2O2 that is possibly involved in signal transduction, resulting in modulation of gene expression. We propose that photorespiration can assume a major role in the readjustment of redox homeostasis. Protection of photosynthesis from photoinhibition through photorespiration is well known. Photorespiration can mitigate oxidative stress under conditions of drought/water stress, salinity, low CO2 and chilling. Adjustments to even mild disturbances in redox status, caused by a deficiency in ascorbate, AOX or chloroplastic NADP‐malate dehydrogenase, comprise increases in photorespiratory components such as catalase, P‐protein of glycine decarboxylase complex (GDC) and glycine content. The accumulation of excess reducing equivalents or ROS in plant cells also affects mitochondria. Therefore, a strong interaction between the chloroplast redox status and photorespiration is not surprising, but highlights interesting properties evident in plant cells. We draw attention to the fact that a complex network of multiple and dynamic systems, including photorespiration, prevents oxidative damage while optimising photosynthesis. Further experiments are necessary to identify and validate the direct targets of redox signals among photorespiratory components.

Từ khóa


Tài liệu tham khảo

10.1016/j.plantsci.2010.12.004

10.1104/pp.122.4.1201

10.1146/annurev.arplant.55.031903.141701

10.1146/annurev.arplant.50.1.601

10.1007/s004250050461

10.1016/j.pbi.2012.01.008

10.1007/s00425-006-0222-3

10.1111/j.1365-3040.2012.02567.x

10.1007/s00425-005-1505-9

10.1016/j.jhazmat.2011.06.011

10.1111/j.1365-3040.2008.01780.x

10.1186/1471-2164-8-175

10.1016/j.jplph.2008.04.004

10.4161/psb.3.3.5536

10.1016/j.resp.2010.02.007

Edwards G., 1983, C3, C4: Mechanism, and cellular and environmental regulation of photosynthesis

10.4161/psb.2.5.4461

10.1104/pp.107.099317

10.1104/pp.108.126789

10.1104/pp.121.2.675

10.1046/j.1469-8137.2000.00667.x

10.1105/tpc.105.033589

10.1146/annurev.arplant.043008.091948

10.1093/jxb/ers013

10.1023/B:PHOT.0000040566.55149.52

10.1016/j.plaphy.2006.10.024

Hanke G.T., 2009, Use of transgenic plants to uncover strategies for maintenance of redox homeostasis during photosynthesis, Advances in Botanical Research: Oxidative Stress and Redox Regulation in Plants, 52, 207, 10.1016/S0065-2296(10)52008-1

10.1093/aob/mcf023

10.1093/jxb/err386

Heldt H.W., 2010, Plant biochemistry

10.1023/A:1006408712416

10.1016/S0005-2728(03)00106-3

10.1034/j.1399-3054.2001.1110402.x

10.1111/j.1399-3054.2007.00984.x

10.1093/jxb/err402

10.1104/pp.83.1.69

10.1038/384557a0

10.4161/psb.3.9.5780

10.1104/pp.108.133777

10.1093/emboj/19.24.6770

10.1105/tpc.112.096677

10.1046/j.1365-3040.2001.00750.x

10.1093/jxb/erq282

10.1111/j.1365-3040.2009.02041.x

10.1016/j.tplants.2004.08.009

10.1016/j.tplants.2011.03.007

10.1046/j.1365-3040.2003.01016.x

10.1093/pcp/pcq173

10.1111/j.1365-313X.2004.02311.x

10.1038/nature02598

10.1093/pcp/pcn140

10.1016/j.bbabio.2007.07.007

10.1146/annurev.arplant.50.1.333

10.1093/aob/mcf096

10.1046/j.1365-3040.2002.00866.x

10.1016/j.ecoenv.2004.06.010

10.1093/jxb/erl083

10.1111/j.1365-313X.2007.03263.x

Raghavendra A.S., 2012, Encyclopedia of Life Support Systems (EOLSS)

10.1111/j.1438-8677.2009.00207.x

10.1111/j.1399-3054.2006.00803.x

10.1104/pp.106.078204

10.1104/pp.109.139378

10.1046/j.1365-3040.2002.00850.x

10.1093/jexbot/52.364.2115

10.1007/s004250100622

10.1111/j.0031-9317.2004.0222.x

10.1007/978-3-642-19106-0_11

10.1111/j.1365-3040.2011.02319.x

10.1007/BF00396887

10.1093/jxb/eri181

10.1016/j.pbi.2007.04.014

10.1074/jbc.M404696200

10.1111/j.1399-3054.2011.01555.x

10.1093/jxb/ern340

10.1111/j.1399-3054.2008.01088.x

10.1104/pp.81.4.1115

10.1111/j.1365-3040.2005.01350.x

10.1093/mp/ssn089

10.1111/j.0031-9317.2005.00582.x

10.1073/pnas.0607751103

10.1093/pcp/pcf109

10.1073/pnas.92.24.11230

10.1016/j.copbio.2006.02.002

10.1186/1471-2164-12-149

10.1046/j.1365-3040.1999.00410.x

10.1007/s00425-010-1193-y

10.1021/pr101102p

Zhou S., 2006, Cloning and characterization of glycolate oxidase and NADH‐dependent hydroxypyruvate reductase genes in Pachysandra terminalis, HortScience, 41, 1226, 10.21273/HORTSCI.41.5.1226