Emergent Dynamical Properties of the BCM Learning Rule
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hebb D. The organization of behavior. New York: Wiley; 1949.
Hertz J, Krogh A, Palmer R. Introduction to the theory of neural computation. Reading: Addison-Wesley; 1991.
Nass MN, Cooper L. A theory for the development of feature detecting cells in the visual cortex. Biol Cybern. 1975;19:1–18.
Cooper LN, Liberman F, Oja E. A theory for the acquisition and loss of neuron specificity in the visual cortex. Biol Cybern. 1979;33:9–28.
Bienenstock EL, Cooper L, Munro P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.
Shouval H, Intrator N, Cooper L. BCM network develops orientation selectivity and ocular dominance in natural scene environment. Vis Res. 1997;37(23):3339–42.
Intrator N, Cooper L. Objective function formulation of the BCM theory for visual cortical plasticity: statistical connections, stability conditions. Neural Netw. 1992;5:3–17.
Bliem B, Mueller-Dahlbaus JFM, Dinse HR, Ziemann U. Homeostatic metaplasticity in human somatosensory cortex. J Cogn Neurosci. 2008;20:1517–28.
Castellani GC, Intrator N, Shouval H, Cooper L. Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons. Netw Comput Neural Syst. 1999;10:111–21.
Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nature. 2012;13:798–810.
Munro PW. A model for generalization and specification by a single neuron. Biol Cybern. 1984;51:169–79.
Yeung LC, Shouval HC, Blais BS, Cooper LN. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci USA. 2004;101(41):14943–8.
Gjorgjieva J, Clopath C, Audet J, Pfister J-P. A triplet spike-timing -dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci USA. 2011;108(48):19383–8.
Dotan Y, Intrator N. Multimodality exploration by an unsupervised projection pursuit neural network. IEEE Trans Neural Netw. 1998;9:464–72.
Intrator N, Gold JI. Three-dimension object recognition of gray level images: the usefulness of distinguishing features. Neural Comput. 1993;5:61–74.
Bachman CM, Musman S, Luong D, Schultz A. Unsupervised BCM projection pursuit algorithms for classification of simulated radar presentations. Neural Netw. 1994;7:709–28.
Intrator N, Gold JI, Bülthoff HH, Edelman S. Three-dimensional object recognition using an unsupervised neural network: understanding the distinguishing features. In: Proceedings of the 8th Israeli Conference on AICV. 1991.
Poljovka A, Benuskova L. Pattern classification with the BCM neural network. In: Stopjakova V, editor. Proc. 2nd Electronic Circuits and Systems Conference—ECS’99, Bratislava. 1999. p. 207–10.
Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107.
Dayan P, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press; 2001.
Field G, Chichilnisky E. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci. 2007;30:1–30.
Johansson R, Vallbo AB. Tactile sensory coding in the glabrous skin of the human hand. In: TINS. 1983.
Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, Kubo T. Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci. 2004;19(8):2337–44.
Yantis S. Sensation and perception. New York, NY: Worth Publishers; 2013.
Gjorgjieva J, Drion G, Marder E. Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr Opin Neurobiol. 2016;37:44–52.
Zhang W, Linden DJ. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci. 2003;4:885–900.
Anirudhan A, Narayanan R. Analogous synaptic plasticity profiles emerge from disparate channel combinations. J Neurosci. 2015;35(11):4691–705.
Clopath C, Gerstner W. Voltage and spike timing interact in STDP—a unified model. Front Synaptic Neurosci. 2010;2:25.
Yger P, Gilson M. Models of metaplasticity: a review of concepts. Front Comput Neurosci. 2015;9:138.
Zenke F, Hennequin G, Gerstner W. Synaptic plasticity in neural networks needs homeostasis with a fast rate detector. PLoS Comput Biol. 2013;9(11):e1003330.
Toyoizumi T, Kaneko M, Stryker MP, Miller KD. Modeling the dynamic interaction of Hebbian and homeostatic plasticity. Neuron. 2014;84(2):497–510.
Moldakarimov SB, McClelland JL, Ermentrout GB. A homeostatic rule for inhibitory synapses promotes temporal sharpening and cortical reorganization. Proc Natl Acad Sci USA. 2006;103(44):16526–31.
Kozloski J, Cecchi G. A theory of loop formation and elimination by spike timing-dependent plasticity. Front Neural Circuits. 2010;4:7.
Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10(3):358–64.