Emergent Dynamical Properties of the BCM Learning Rule

Lawrence C. Udeigwe1, Paul Munro2, Bard Ermentrout3
1Department of Mathematics, Manhattan College, 4513 Manhattan College Parkway Riverdale, New York, 10471, USA
2School of Information Science, University of Pittsburgh, 135 North Bellefield Avenue, Pittsburgh, PA, 15260, USA
3Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hebb D. The organization of behavior. New York: Wiley; 1949.

Hertz J, Krogh A, Palmer R. Introduction to the theory of neural computation. Reading: Addison-Wesley; 1991.

Nass MN, Cooper L. A theory for the development of feature detecting cells in the visual cortex. Biol Cybern. 1975;19:1–18.

Cooper LN, Liberman F, Oja E. A theory for the acquisition and loss of neuron specificity in the visual cortex. Biol Cybern. 1979;33:9–28.

Bienenstock EL, Cooper L, Munro P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

Shouval H, Intrator N, Cooper L. BCM network develops orientation selectivity and ocular dominance in natural scene environment. Vis Res. 1997;37(23):3339–42.

Intrator N, Cooper L. Objective function formulation of the BCM theory for visual cortical plasticity: statistical connections, stability conditions. Neural Netw. 1992;5:3–17.

Bliem B, Mueller-Dahlbaus JFM, Dinse HR, Ziemann U. Homeostatic metaplasticity in human somatosensory cortex. J Cogn Neurosci. 2008;20:1517–28.

Castellani GC, Intrator N, Shouval H, Cooper L. Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons. Netw Comput Neural Syst. 1999;10:111–21.

Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nature. 2012;13:798–810.

Munro PW. A model for generalization and specification by a single neuron. Biol Cybern. 1984;51:169–79.

Yeung LC, Shouval HC, Blais BS, Cooper LN. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci USA. 2004;101(41):14943–8.

Izhikevich EM, Desia N. Relating STDP to BCM. Neural Comput. 2003;15:1511–23.

Gjorgjieva J, Clopath C, Audet J, Pfister J-P. A triplet spike-timing -dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci USA. 2011;108(48):19383–8.

Dotan Y, Intrator N. Multimodality exploration by an unsupervised projection pursuit neural network. IEEE Trans Neural Netw. 1998;9:464–72.

Intrator N, Gold JI. Three-dimension object recognition of gray level images: the usefulness of distinguishing features. Neural Comput. 1993;5:61–74.

Bachman CM, Musman S, Luong D, Schultz A. Unsupervised BCM projection pursuit algorithms for classification of simulated radar presentations. Neural Netw. 1994;7:709–28.

Intrator N. Feature extraction using unsupervised neural network. Neural Comput. 1992;4:98–107.

Intrator N, Gold JI, Bülthoff HH, Edelman S. Three-dimensional object recognition using an unsupervised neural network: understanding the distinguishing features. In: Proceedings of the 8th Israeli Conference on AICV. 1991.

Poljovka A, Benuskova L. Pattern classification with the BCM neural network. In: Stopjakova V, editor. Proc. 2nd Electronic Circuits and Systems Conference—ECS’99, Bratislava. 1999. p. 207–10.

Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107.

Dayan P, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press; 2001.

Field G, Chichilnisky E. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci. 2007;30:1–30.

Johansson R, Vallbo AB. Tactile sensory coding in the glabrous skin of the human hand. In: TINS. 1983.

Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, Kubo T. Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci. 2004;19(8):2337–44.

Yantis S. Sensation and perception. New York, NY: Worth Publishers; 2013.

Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. Berlin: Springer; 2010.

Gjorgjieva J, Drion G, Marder E. Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr Opin Neurobiol. 2016;37:44–52.

Zhang W, Linden DJ. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci. 2003;4:885–900.

Anirudhan A, Narayanan R. Analogous synaptic plasticity profiles emerge from disparate channel combinations. J Neurosci. 2015;35(11):4691–705.

Clopath C, Gerstner W. Voltage and spike timing interact in STDP—a unified model. Front Synaptic Neurosci. 2010;2:25.

Yger P, Gilson M. Models of metaplasticity: a review of concepts. Front Comput Neurosci. 2015;9:138.

Zenke F, Hennequin G, Gerstner W. Synaptic plasticity in neural networks needs homeostasis with a fast rate detector. PLoS Comput Biol. 2013;9(11):e1003330.

Toyoizumi T, Kaneko M, Stryker MP, Miller KD. Modeling the dynamic interaction of Hebbian and homeostatic plasticity. Neuron. 2014;84(2):497–510.

Moldakarimov SB, McClelland JL, Ermentrout GB. A homeostatic rule for inhibitory synapses promotes temporal sharpening and cortical reorganization. Proc Natl Acad Sci USA. 2006;103(44):16526–31.

Kozloski J, Cecchi G. A theory of loop formation and elimination by spike timing-dependent plasticity. Front Neural Circuits. 2010;4:7.

Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10(3):358–64.

Miller KD, MacKay DJC. The role of constraints in Hebbian learning. Neural Comput. 1994;6:100–26.

Zenke F, Gerstner W. Hebbian plasticity requires compensatory processes on multiple timescales. Philos Trans R Soc Lond B. 2016;372:20160259.