Tối ưu hóa nguồn lực của khoa cấp cứu nhằm cải thiện hiệu suất: một bài tổng quan

Journal of Industrial Engineering International - Tập 15 Số S1 - Trang 253-266 - 2019
Kazi Badrul Ahsan1, M. R. Alam1, Doug Gordon Morel1, Azharul Karim1
1School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia

Tóm tắt

Tóm tắtCác khoa cấp cứu (EDs) đang ngày càng trở nên quá tải do tác động kết hợp của nhu cầu ngày càng tăng, tình trạng tắc nghẽn trong việc tiếp cận và khả năng lâm sàng ngày càng tăng của các khoa cấp cứu. Sự tắc nghẽn này được biết đến có ảnh hưởng tiêu cực đến hiệu suất của dịch vụ y tế. Những nỗ lực để vượt qua thách thức này chủ yếu tập trung vào quản lý nhu cầu và áp dụng các mục tiêu quy trình toàn hệ thống như “quy tắc bốn giờ” nhằm giải quyết tình trạng tắc nghẽn trong việc tiếp cận. Ngoài ra, các khoa cấp cứu đã giới thiệu nhiều chiến lược như “theo dõi nhanh”, “phân loại nâng cao” và các mô hình chăm sóc mới như việc giới thiệu điều dưỡng thực hành nhằm cải thiện lưu lượng bệnh nhân. Tuy nhiên, hầu hết các thực tiễn này đều yêu cầu thêm nguồn lực. Một số nhà nghiên cứu đã cố gắng tối ưu hóa nguồn lực bằng cách sử dụng các mô hình tối ưu hóa khác nhau để đảm bảo sử dụng tốt nhất nguồn lực nhằm cải thiện dòng chảy bệnh nhân. Tuy nhiên, không phải tất cả các phương pháp mô hình hóa đều phù hợp cho mọi tình huống và hiện chưa có đánh giá quan trọng về các mô hình tối ưu hóa được sử dụng trong các khoa cấp cứu bệnh viện. Mục tiêu của bài viết này là xem xét các mô hình phân tích khác nhau được sử dụng để tối ưu hóa nguồn lực của khoa cấp cứu nhằm cải thiện dòng chảy bệnh nhân và nêu bật những lợi ích và hạn chế của các mô hình này. Một loạt các kỹ thuật mô hình hóa bao gồm mô hình dựa trên tác nhân và mô phỏng, mô phỏng sự kiện rời rạc, mô hình xếp hàng, tối ưu hóa mô phỏng và mô hình toán học đã được xem xét. Phân tích cho thấy rằng mỗi phương pháp mô hình hóa và kỹ thuật tối ưu hóa đều có những ưu điểm và nhược điểm nhất định và việc áp dụng chúng cũng được hướng dẫn bởi các mục tiêu cụ thể. Sự phức tạp, mối quan hệ tương tác và tính biến động của các biến liên quan đến khoa cấp cứu khiến việc áp dụng các kỹ thuật mô hình hóa tiêu chuẩn trở nên khó khăn. Tuy nhiên, những mô hình này có thể được sử dụng để xác định nguyên nhân của sự cản trở dòng chảy và để xác định các lĩnh vực mà việc đầu tư vào các nguồn lực bổ sung có khả năng mang lại nhiều lợi ích nhất.

Từ khóa


Tài liệu tham khảo

Abo-Hamad W (2011) An optimisation-based framework for complex business process: healthcare application. Dublin Institute of Technology, Dublin

Abo-Hamad W, Arisha A (2013) Simulation-based framework to improve patient experience in an emergency department. Eur J Oper Res 224:154–166

Ahalt V, Argon NT, Ziya S, Strickler J, Mehrotra A (2018) Comparison of emergency department crowding scores: a discrete-event simulation approach. Health Care Manag Sci 21(1):144–155

Ahmed MA, Alkhamis TM (2009) Simulation optimization for an emergency department healthcare unit in Kuwait. Eur J Oper Res 198:936–942

Ahsan KB, Karim M, FitzGerald GJ, Morel DG, Burke JA (2019) Development of relationship between triaging of patients and emergency department performance. Procedia Manuf 30:200–207

Ajmi F, Zgaya H, Othman SB, Hammadi S (2019) Agent-based dynamic optimization for managing the workflow of the patient’s pathway. Simul Model Pract Theory 31:101935

Al Owad A, Karim M, Ma L (2014) Integrated lean six sigma approach for patient flow improvement in hospital emergency department. In: Advanced materials research. Trans Tech Publications, Durnten-Zurich, pp 1893–1902

Al Owad A, Samaranayake P, Karim A, Ahsan KB (2018) An integrated lean methodology for improving patient flow in an emergency department—case study of a Saudi Arabian hospital. Prod Plan Control 29:1058–1081

Arkun A, Briggs WM, Patel S, Datillo PA, Bove J, Birkhahn RH (2010) Emergency department crowding: factors influencing flow. West J Emerg Med 11(1):10–15

Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo CA Jr (2003) A conceptual model of emergency department crowding. Ann Emerg Med 42:173–180

Cabrera E, Taboada M, Iglesias ML, Epelde F, Luque E (2011) Optimization of healthcare emergency departments by agent-based simulation. Procedia Comput Sci 4:1880–1889

Cabrera E, Luque E, Taboada M, Epelde F, Iglesias ML (2012a) ABMS optimization for emergency departments. In: Proceedings of the winter simulation conference. Winter simulation conference

Cabrera E, Taboada M, Iglesias ML, Epelde F, Luque E (2012b) Simulation optimization for healthcare emergency departments. Procedia Comput Sci 9:1464–1473

Ceglowski R, Churilov L, Wasserthiel J (2007) Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. J Oper Res Soc 58:246–254

Chen T, Wang C (2016) Multi-objective simulation optimization for medical capacity allocation in emergency department. J Simul 10:50–68

Daldoul D, Nouaouri I, Bouchriha H, Allaoui H (2015) Optimization on human and material resources in emergency department. In: 2015 international conference on industrial engineering and systems management (IESM). IEEE, pp 633–638

De Freitas L, Goodacre S, O’Hara R, Thokala P, Hariharan S (2018) Interventions to improve patient flow in emergency departments: an umbrella review. Emerg Med J. 35(10):626–637

Derlet RW (2002) Overcrowding in emergency departments: increased demand and decreased capacity. Ann Emerg Med 39:430–432

Dickson EW, Singh S, Cheung DS, Wyatt CC, Nugent AS (2009) Application of lean manufacturing techniques in the emergency department. J Emerg Med 37:177–182

Diefenbach ML (2010) Application of operations research techniques to improve efficiency in the emergency department

Diefenbach M, Kozan E (2011) Effects of bed configurations at a hospital emergency department. J Simul 5:44–57

Eskandari H, Riyahifard M, Khosravi S, Geiger CD (2011) Improving the emergency department performance using simulation and MCDM methods. In: Proceedings of the 2011 winter simulation conference (WSC). IEEE, pp 1211–1222

Feng Y-Y, Wu I-C, Chen T-L (2015) Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm. Health Care Manag Sci 20(1):55–75

Fishman J, McLafferty S, Galanter W (2018) Does spatial access to primary care affect emergency department utilization for nonemergent conditions? Health Serv Res 53(1):489–508

FitzGerald G, Jelinek GA, Scott D, Gerdtz MF (2010) Emergency department triage revisited. Emerg Med J 27:86–92

Ghanes K, Jouini O, Jemai Z, Wargon M, Hellmann R, Thomas V, Koole G (2014) A comprehensive simulation modeling of an emergency department: a case study for simulation optimization of staffing levels. In: 2014 winter simulation conference (WSC). IEEE, pp 1421–1432

Hsieh MC, Wang EM, Lee WC, Li LW, Hsieh CY, Tsai W, Wang CP, Huang JL, Liu TC (2018) Application of HFACS, fuzzy TOPSIS, and AHP for identifying important human error factors in emergency departments in Taiwan. Int J Ind Ergon 1(67):171–179

Hu X, Barnes S, Golden B (2018) Applying queueing theory to the study of emergency department operations: a survey and a discussion of comparable simulation studies. Int Trans Oper Res 25(1):7–49

Ibrahim IM et al (2015) A proposed simulation optimization model framework for emergency department problems in public hospital. In: AIP conference proceedings, vol 1. AIP Publishing

Jafari H, Salmasi N (2015) Maximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm. J Ind Eng Int 11(3):439–458

Joubert E, Espinasse M-A, Nakhla M (2015) Patients flow optimization in ED: an operational research on the impacts of physician triage. In: 2015 international conference on industrial engineering and systems management (IESM). IEEE, pp 602–608

Kuo Y-H, Rado O, Lupia B, Leung JM, Graham CA (2016) Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions. Flex Serv Manuf J 28:120–147

Kwak N, Lee C (1997) A linear goal programming model for human resource allocation in a health-care organization. J Med Syst 21:129–140

Kyriacou DN, Ricketts V, Dyne PL, McCollough MD, Talan DA (1999) A 5-year time study analysis of emergency department patient care efficiency. Ann Emerg Med 34:326–335

Lim ME, Nye T, Bowen JM, Hurley J, Goeree R, Tarride J-E (2012) Mathematical modeling: the case of emergency department waiting times. Int J Technol Assess Health Care 28:93–109

Lowthian JA, Curtis AJ, Cameron PA, Stoelwinder JU, Cooke MW, McNeil JJ (2011) Systematic review of trends in emergency department attendances: an Australian perspective. Emerg Med J 28:373–377

McHugh M, Van Dyke K, McClelland M, Moss D (2011) Improving patient flow and reducing emergency department crowding: a guide for hospitals. AHRQ Publication No. 11(12)-0094. Rockville, MD

Memari H, Rahimi S, Gupta B, Sinha K, Debnath N (2016) Towards patient flow optimization in emergency departments using genetic algorithms. In: 2016 IEEE 14th international conference on industrial informatics (INDIN). IEEE, pp 843–850

Mohammadian M, Babaei M, Amin Jarrahi M, Anjomrouz E (2019) Scheduling nurse shifts using goal programming based on nurse preferences: a case study in an emergency department. Int J Eng 32(7):954–963

Moskop JC, Sklar DP, Geiderman JM, Schears RM, Bookman KJ (2009) Emergency department crowding, part 1—concept, causes, and moral consequences. Ann Emerg Med 53:605–611

Oddoye JP, Jones DF, Tamiz M, Schmidt P (2009) Combining simulation and goal programming for healthcare planning in a medical assessment unit. Eur J Oper Res 193:250–261

Omar E-R, Garaix T, Augusto V, Xie X (2015) A stochastic optimization model for shift scheduling in emergency departments. Health Care Manag Sci 18:289–302

Oyedokun T, Donauer A, Stempien J, McKay S (2019) Self-documentary in the emergency department: perspectives on patients recording their own procedures. Can J Emerg Med 21(3):384–390

Peck JS, Kim S-G (2010) Improving patient flow through axiomatic design of hospital emergency departments. CIRP J Manuf Sci Technol 2:255–260

Pines JM, Iyer S, Disbot M, Hollander JE, Shofer FS, Datner EM (2008) The effect of emergency department crowding on patient satisfaction for admitted patients. Acad Emerg Med 15:825–831

Rabbani M, Farshbaf-Geranmayeh A, Yazdanparast R (2018) A simulation optimization approach for integrated resource allocation in an emergency department, pharmacy, and lab. Intell Decis Technol 12(2):187–212

Ramirez-Nafarrate A, Fowler JW, Wu T (2011) Design of centralized ambulance diversion policies using simulation–optimization. In: Proceedings of the 2011 winter simulation conference (WSC). IEEE, pp 1251–1262

Rutman L, Stone K, Reid J, Woodward GAT, Migita R (2015) Improving patient flow using lean methodology: an emergency medicine experience. Curr Treat Options Pediatr 1:359–371

Salvi F, Morichi V, Grilli A, Giorgi R, De Tommaso G, Dessi-Fulgheri P (2007) The elderly in the emergency department: a critical review of problems and solutions. Intern Emerg Med 2(4):292–301

Selker HP, Griffith JL, Patil S, Long WJ, d’Agostino R (1995) A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med 43:468–476

Stefanini A, Aloini D, Benevento E, Dulmin R, Mininno V (2018) Performance analysis in emergency departments: a data-driven approach. Meas Bus Excell 22(2):130–145

Sundaramoorthi D, Chen VC, Rosenberger JM, Kim SB, Buckley-Behan DF (2010) A data-integrated simulation-based optimization for assigning nurses to patient admissions. Health Care Manag Sci 13:210–221

Svirsko AC, Norman BA, Rausch D, Woodring J (2019) Using mathematical modeling to improve the emergency department nurse-scheduling process. J Emerg Nurs 45(4):425–432

Toloo S, FitzGerald G, Aitken P, Ting J, Tippett V, Chu K (2011) Emergency health services: demand and service delivery models. Monograph 1: Literature review and activity trends. Queensland University of Technology

Uriarte AG, Zúñiga ER, Moris MU, Ng AH (2015) System design and improvement of an emergency department using simulation-based multi-objective optimization. In: Journal of physics: conference series, vol 1. IOP Publishing

Vass H, Szabo ZK (2015) Application of queuing model to patient flow in emergency department. Case study. Procedia Econ Finance 32:479–487

Weng S-J, Cheng B-C, Kwong ST, Wang L-M, Chang C-Y (2011) Simulation optimization for emergency department resources allocation. In: Proceedings of the 2011 winter simulation conference (WSC). IEEE, pp 1231–1238

Wiler JL, Bolandifar E, Griffey RT, Poirier RF, Olsen T (2013) An emergency department patient flow model based on queueing theory principles. Acad Emerg Med 20:939–946

Wong TC, Xu M, Chin KS (2014) A two-stage heuristic approach for nurse scheduling problem: a case study in an emergency department. Comput Oper Res 51:99–110. https://doi.org/10.1016/j.cor.2014.05.018

Yeh J-Y, Lin W-S (2007) Using simulation technique and genetic algorithm to improve the quality care of a hospital emergency department. Expert Syst Appl 32:1073–1083

Yousefi M, Yousefi M (2019) Human resource allocation in an emergency department. Kybernetes. https://doi.org/10.1108/K-12-2018-0675

Zeinali F, Mahootchi M, Sepehri MM (2015) Resource planning in the emergency departments: a simulation-based metamodeling approach. Simul Model Pract Theory 53:123–138

Zhang A, Zhu X, Lu Q, Zhang R (2019) Impact of prioritization on the outpatient queuing system in the emergency department with limited medical resources. Symmetry 11(6):796

Zhao Y, Peng Q, Strome T, Weldon E, Zhang M, Chochinov A (2015) Bottleneck detection for improvement of Emergency Department efficiency. Bus Process Manag J 21:564–585