Emergence of carbapenem-resistant enterobacterales co-harboring blaOXA−78 and blaOXA−58 from India

Springer Science and Business Media LLC - Tập 22 - Trang 1-9 - 2023
Bhaskar Jyoti Das1, K. Melson Singha2, Jayalaxmi Wangkheimayum1, Debadatta Dhar Chanda2, Amitabha Bhattacharjee1
1Department of Microbiology, Assam University, Silchar, Dist : Cachar, India
2Department of Microbiology, Silchar Medical College and Hospital, Silchar, Dist : Cachar, Assam, India

Tóm tắt

Carbapenem-Resistant Enterobacterales (CRE) has been categorized as pathogens of critical priority by World Health organization (WHO) as they pose significant threat to global public health. Carbapenemase production considered as the principal resistance mechanism against carbapenems and with the recent surge and expansion of carbapenemases and its variants among clinically significant bacteria in India, the present study reports expansion blaOXA−78 and blaOXA−58 of in CRE of clinical origin. Bacterial isolates were collected from a tertiary referral hospital and identified through VITEK® 2 Compact automated System (Biomerieux, France). Rapidec® Carba NP (Biomerieux, France) was used to investigate carbapenemase production followed by antibiotic susceptibility testing through Kirby-Bauer Disc Diffusion method and agar dilution method. Class D carbapenemase genes were targeted through PCR assay followed by investigation of horizontal transmission of blaOXA−58 and blaOXA−78. Whole genome sequencing was carried out using Illumina platform to investigate the genetic context of blaOXA−58 and blaOXA−78 genes and further characterization of the CRE isolates. The carbapenem-resistant Escherichia coli (BJD_EC456) and Serratia marcescens (BJD_SM81) received during the study from the tertiary referral hospital were isolated from sputum and blood samples respectively. PCR assay followed by whole genome sequencing revealed that the isolates co-harbor blaOXA−58 and blaOXA−78, a variant of blaOXA−51. Horizontal transfer of blaOXA−58 and blaOXA−78 genes were unsuccessful as these genes were located on the chromosome of the study isolates. Transposon Tn6080 was linked to blaOXA−78 in the upstream region while the insertion sequences ISAba26 and ISCfr1 were identified in the upstream and downstream region of blaOXA−58 gene respectively. In addition, both the isolates were co-harboring multiple antibiotic resistance genes conferring clinical resistance towards beta-lactams, aminoglycosides, fluroquinolones, sulphonamides, tetracyclines. BJD_EC180 belonged to ST2437 while BJD_SM81 was of an unknown sequence type. The nucleotide sequences of blaOXA−78 (OQ533021) and blaOXA−58 (OQ533022) have been deposited in GenBank. The study provides a local epidemiological information regarding carbapenem resistance aided by transposon and insertion sequences associated blaOXA−78 and blaOXA−58 genes associated and warrants continuous monitoring to prevent their further dissemination into carbapenem non-susceptible strains thereby contributing to carbapenem resistance burden which is currently a global concern.

Tài liệu tham khảo

World Health Organization, Health Care Facility Level., 2019. Implementation Manual to Prevent and Control the Spread of Carbapenem-resistant Organisms at the National and : Interim Practical Manual Supporting Implementation of the Guidelines for the Prevention and Control of Carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities (No. WHO/UHC/ SDS/2019.6). World Health Organization. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27. https://doi.org/10.1016/S1473-3099(17)30753-3. Epub 2017 Dec 21. PMID: 29276051. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440 – 58, table of contents. https://doi.org/10.1128/CMR.00001-07. PMID: 17630334; PMCID: PMC1932750. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. https://doi.org/10.1128/CMR.00088-17. PMID: 30068738; PMCID: PMC6148190. Pourbaghi E, Doust RH, Rahbar M, Rahnamaye M. Investigation of OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 genes in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae isolates from patients with urinary tract infections. Jundishapur J Microbiol (JJM) [online]. 2022;15(2):0–0. Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE, Li RW, Stenger DA, Taitt CR, Vora GJ. Identification of blaOXA–51–like, blaOXA–58, blaDIM–1, and blaVIM carbapenemase genes in hospital Enterobacteriaceae isolates from Sierra Leone. J Clin Microbiol. 2013;51(7):2435–8. https://doi.org/10.1128/JCM.00832-13. Epub 2013 May 8. PMID: 23658259; PMCID: PMC3697688. Merkier AK, Centrón D. Bla(OXA-51)-type beta-lactamase genes are ubiquitous and vary within a strain in Acinetobacter baumannii. Int J Antimicrob Agents. 2006;28(2):110–3. https://doi.org/10.1016/j.ijantimicag.2006.03.023. Epub 2006 Jul 17. PMID: 16844350. Al-Hassan L, El Mehallawy H, Amyes SG. Diversity in Acinetobacter baumannii isolates from paediatric cancer patients in Egypt. Clin Microbiol Infect. 2013;19(11):1082-8. https://doi.org/10.1111/1469-0691.12143. Epub 2013 Feb 15. PMID: 23413888. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72 – 7. https://doi.org/10.1111/j.1574-6968.2006.00195.x. PMID: 16630258. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D {beta}-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(1):202–8. https://doi.org/10.1128/AAC.49.1.202-208.2005. PMID: 15616297; PMCID: PMC538857. Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–63. https://doi.org/10.1128/CMR.00117-13. PMID: 24696435; PMCID: PMC3993105. Patel G, Bonomo RA. Status report on carbapenemases: challenges and prospects. Expert Rev Anti Infect Ther. 2011;9(5):555–70. https://doi.org/10.1586/eri.11.28. PMID: 21609267. Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci. 2022;1518(1):166–82. https://doi.org/10.1111/nyas.14918. Epub 2022 Oct 31. PMID: 36316792; PMCID: PMC9771954. CLSI Committee. The Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial susceptibility testing; M100-ED32. Wayne, PA: CLSI; 2022. Soumet C, Ermel G, Fach P, Colin P. Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett Appl Microbiol. 1994;19(5):294-8. https://doi.org/10.1111/j.1472-765x.1994.tb00458.x. PMID: 7765440. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3. https://doi.org/10.1016/j.ijantimicag.2006.01.004. Epub 2006 Mar 24. PMID: 16564159. Jeong SH, Bae IK, Park KO, An YJ, Sohn SG, Jang SJ, Sung KH, Yang KS, Lee K, Young D, Lee SH. Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. J Microbiol. 2006;44(4):423–31. PMID: 16953178. Das BJ, Wangkheimayum J, Singha KM, Bhowmik D, Dhar D, Bhattacharjee A. Propagation of blaKPC-2 within two sequence types of Escherichia coli in a tertiary referral hospital of northeast India. Gene Rep. 2021;24:101283. Das BJ, Singha KM, Wangkheimayum J, Bhowmik D, Chanda DD, Bhattacharjee A. Occurrence of blaOXA-48 type carbapenemase in Escherichia coli with coexisting resistance determinants: a report from India. Gene Rep. 2022;26:101459. Li S, Meadow Anderson L, Yang JM, Lin L, Yang H. DNA transformation via local heat shock. Appl Phys Lett. 2007;91(1):013902. Das BJ, Singha KM, Chanda DD, Bhattacharjee A. Elimination of diverse Inc type plasmids carrying carbapenemase genes within Escherichia coli of clinical origin: a single-center study from North-east India. Gene Rep. 2023;31:101770. Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560. PMID: 30423086; PMCID: PMC6129281. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021. Epub 2012 Apr 16. PMID: 22506599; PMCID: PMC3342519. Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P, Crescenzi P, Fani R, Fondi M. MeDuSa: a multi-draft based scaffolder. Bioinformatics. 2015;31(15):2443–51. https://doi.org/10.1093/bioinformatics/btv171. Epub 2015 Mar 25. PMID: 25810435. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9. https://doi.org/10.1093/bioinformatics/btu153. Epub 2014 Mar 18. PMID: 24642063. Padmalakshmi Y, Shanthi M, Sekar U, Arunagiri K. Phenotypic and molecular Characterisation of Carbapenemases in Acinetobacter Species in a Tertiary Care Centre in Tamil Nadu, India. Natil Lab Med. 2015. Mohanty S, Gajanand M, Gaind R. Identification of carbapenemase-mediated resistance among Enterobacteriaceae bloodstream isolates: A molecular study from India. Indian J Med Microbiol. 2017 Jul-Sep;35(3):421–425. https://doi.org/10.4103/ijmm.IJMM_16_386. PMID: 29063891. Manohar P, Leptihn S, Lopes BS, Nachimuthu R. Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. JAC Antimicrob Resist. 2021;3(1):dlab015. https://doi.org/10.1093/jacamr/dlab015. PMID: 34223092; PMCID: PMC8210035. Kumari N, Kumar M, Katiyar A, Kumar A, Priya P, Kumar B, Biswas NR, Kaur P. Genome-wide identification of carbapenem-resistant Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India. Sci Rep. 2022;12(1):8477. https://doi.org/10.1038/s41598-022-12471-3. PMID: 35590022; PMCID: PMC9120164. Chen TL, Lee YT, Kuo SC, Hsueh PR, Chang FY, Siu LK, Ko WC, Fung CP. Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob Agents Chemother. 2010;54(11):4575–81. https://doi.org/10.1128/AAC.00764-10. Epub 2010 Aug 16. PMID: 20713680; PMCID: PMC2976157. Lee YT, Kuo SC, Chiang MC, Yang SP, Chen CP, Chen TL, Fung CP. Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii. Antimicrob Agents Chemother. 2012;56(2):1124–7. https://doi.org/10.1128/AAC.00622-11. Epub 2011 Nov 14. PMID: 22083478; PMCID: PMC3264228. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–606. https://doi.org/10.1093/jac/dks121. Epub 2012 Apr 11. PMID: 22499996. Manohar P, Shanthini T, Ayyanar R, Bozdogan B, Wilson A, Tamhankar AJ, Nachimuthu R, Lopes BS. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. J Med Microbiol. 2017;66(7):874–883. https://doi.org/10.1099/jmm.0.000508. Epub 2017 Jul 3. PMID: 28671537. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF. Carbapenemase-producing Organisms: A Global Scourge. Clin Infect Dis. 2018;66(8):1290–7. https://doi.org/10.1093/cid/cix893. PMID: 29165604; PMCID: PMC5884739. van Loon K. Voor In ‘t Holt AF, Vos MC. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;62(1):e01730-17. https://doi.org/10.1128/AAC.01730-17. PMID: 29038269; PMCID: PMC5740327. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55(11):4943-60. https://doi.org/10.1128/AAC.00296-11. Epub 2011 Aug 22. PMID: 21859938; PMCID: PMC3195018. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826 – 36. https://doi.org/10.1111/j.1469-0691.2006.01456.x. PMID: 16882287. Gur D, Korten V, Unal S, Deshpande LM, Castanheira M. Increasing carbapenem resistance due to the clonal dissemination of oxacillinase (OXA-23 and OXA-58)-producing Acinetobacter baumannii: report from the Turkish SENTRY Program sites. J Med Microbiol. 2008;57(Pt 12):1529–1532. https://doi.org/10.1099/jmm.0.2008/002469-0. PMID: 19018025. Nguyen AT, Pham SC, Ly AK, Nguyen CVV, Vu TT, Ha TM. Overexpression of blaOXA-58 gene driven by ISAba3 is Associated with Imipenem Resistance in a clinical Acinetobacter baumannii isolate from Vietnam. Biomed Res Int. 2020;2020:7213429. https://doi.org/10.1155/2020/7213429. PMID: 32802871; PMCID: PMC7420922.