Elevated Endosomal Cholesterol Levels in Niemann-Pick Cells Inhibit Rab4 and Perturb Membrane Recycling

Molecular Biology of the Cell - Tập 15 Số 10 - Trang 4500-4511 - 2004
Amit Choudhury1, Deepak Sharma1, David L. Marks1, Richard E. Pagano1
1Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905

Tóm tắt

In normal human skin fibroblasts (HSFs), fluorescent glycosphingolipid analogues are endocytosed and sorted into two pools, one that is recycled to the plasma membrane and one that is transported to the Golgi complex. Here, we investigated glycosphingolipid recycling in Niemann-Pick type A and C lipid storage disease fibroblasts (NPFs). Cells were incubated with a fluorescent analogue of lactosylceramide (LacCer) at 16°C to label early endosomes (EEs), shifted to 37°C, and lipid recycling was quantified. Using dominant negative rabs, we showed that, in normal HSFs, LacCer recycling was rapid (t1/2∼8 min) and mainly rab4-dependent. In NPFs, LacCer recycling was delayed (t1/2∼30–40 min), and rab4-dependent recycling was absent, whereas rab11-dependent recycling predominated. Transferrin recycling via the rab4 pathway was similarly perturbed in NPFs. Compared with normal HSFs, EEs in NPFs showed high cholesterol levels and an altered organization of rab4. In vitro extraction of rab4 (but not rab11) with GDP dissociation inhibitor was severely attenuated in NPF endosomal fractions. This impairment was reversed with cholesterol depletion of isolated endosomes or with high-salt treatment of endosomes. These data suggest that abnormal membrane recycling in NPFs results from specific inhibition of rab4 function by excess cholesterol in EEs.

Từ khóa


Tài liệu tham khảo

Bligh, E.G., and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol.37, 911-917.

Cavalli, V., Vilbois, F., Corti, M., Marcote, M.J., Tamura, K., Karin, M., Arkinstall, S., and Gruenberg, J. (2001). The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex.Mol. Cell7, 421-432.

Chen, C.S., Bach, G., and Pagano, R.E. (1998). Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease.Proc. Natl. Acad. Sci. USA95, 6373-6378.

Chen, C.S., Patterson, M.C., Wheatley, C.L., O'Brien, J.F., and Pagano, R.E. (1999). Broad screening test for sphingolipid-storage diseases.Lancet354, 901-905.

Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.W., Marks, D.L., and Pagano, R.E. (2002). Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells.J. Clin. Invest.109, 1541-1550.

Daro, E., van der Sluijs, P., Galli, T., and Mellman, I. (1996). Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling.Proc. Natl. Acad. Sci. USA93, 9559-9564.

Faure, J., Vignais, P.V., and Dagher, M.C. (1999). Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex.Eur. J. Biochem.262, 879-889.

Hao, M., and Maxfield, F.R. (2000). Characterization of rapid membrane internalization and recycling.J. Biol. Chem.275, 15279-15286.

10.1091/mbc.e02-01-0025

Hunyady, L., Baukal, A.J., Gaborik, Z., Olivares-Reyes, J.A., Bor, M., Szaszak, M., Lodge, R., Catt, K.J., and Balla, T. (2002). Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1angiotensin receptor.J. Cell Biol.157, 1211-1222.

Jeyakumar, M., Butters, T.D., Dwek, R.A., and Platt, F.M. (2002). Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis.Neuropathol. Appl. Neurobiol.28, 343-357.

Klein, U., Gimpl, G., and Fahrenholz, F. (1995). Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor.Biochemistry34, 13784-13793.

Kok, J.W., Eskelinen, S., Hoekstra, K., and Hoekstra, D. (1989). Salvage of glucosylceramide by recycling after internalization along the pathway of receptor-mediated endocytosis.Proc. Natl. Acad. Sci. USA86, 9896-9900.

Koval, M., and Pagano, R.E. (1989). Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogs in cultured fibroblasts.J. Cell Biol.108, 2169-2181.

Koval, M., and Pagano, R.E. (1990). Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts.J. Cell Biol.111, 429-442.

Lebrand, C., Corti, M., Goodson, H., Cosson, P., Cavalli, V., Mayran, N., Faure, J., and Gruenberg, J. (2002). Late endosome motility depends on lipids via the small GTPase Rab7.EMBO J.21, 1289-1300.

Leventhal, A.R., Chen, W., Tall, A.R., and Tabas, I. (2001). Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux.J. Biol. Chem.276, 44976-44983.

10.1091/mbc.12.4.981

Marks, D.L., and Pagano, R.E. (2002). Endocytosis and sorting of glycosphingolipids in sphingolipid storage disease.Trends Cell Biol.12, 605-613.

Martin, O.C., Comly, M.E., Blanchette-Mackie, E.J., Pentchev, P.G., and Pagano, R.E. (1993). Cholesterol deprivation affects the fluorescence properties of a ceramide analog at the Golgi apparatus of living cells.Proc. Natl. Acad. Sci. USA90, 2661-2665.

Martin, O.C., and Pagano, R.E. (1994). Internalization and sorting of a fluorescent analog of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms.J. Cell Biol.125, 769-781.

Maxfield, F.R., and McGraw, T.E. (2004). Endocytic recycling.Nat. Rev. Mol. Cell. Biol.5, 121-132.

Mayor, S., Presley, J.F., and Maxfield, F.R. (1993). Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.J. Cell Biol.121, 1257-1269.

Neufeld, E.B.et al.(1999). The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo.J. Biol. Chem.274, 9627-9635.

Patterson, M., Vanier, M., Suzuki, K., Morris, J., Carstea, E., Neufeld, E., Blanchette-Machie, E., and Pentchev, P. (2001). Niemann-Pick disease type C: a lipid trafficking disorder. In:The Metabolic and Molecular Bases of Inherited Disease, vol.III, ed. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, New York: McGraw Hill, 3611-3634.

Pfeffer, S.R. (2001). Rab GTPases: specifying and deciphering organelle identity and function.Trends Cell Biol.11, 487-491.

Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (1999). Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid storage diseases.Nat. Cell Biol.1, 386-388.

Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (2001). Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways.J. Cell Biol.154, 535-547.

Schuchman, E.H., and Desnick, R.J. (2001). Niemann-Pick disease types A and B: acid sphingomyelinase deficiencies. In:The Metabolic and Molecular Bases of Inherited Disease, vol.III, ed. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, New York: McGraw-Hill, 3589-3610.

Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D.D. (eds.) (2001). Lysosomal enzymes. In:The Metabolic and Molecular Bases of Inherited Disease, vol.III, New York: McGraw-Hill, 3371-3894.

Seabra, M.C., Mules, E.H., and Hume, A.N. (2002). Rab GTPases, intracellular traffic and disease.Trends Mol. Med.8, 23-30.

Seachrist, J.L., Anborgh, P.H., and Ferguson, S.S.G. (2000). β2-Adrenergic receptor internalization, endosomal sorting, and plasma membrane recycling are regulated by rab GTPases.J. Biol. Chem.275, 27221-27228.

10.1091/mbc.e04-03-0189

Sharma, D.K., Choudhury, A., Singh, R.D., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (2003). Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling.J. Biol. Chem.278, 7564-7572.

Sheff, D.R., Daro, E.A., Hull, M., and Mellman, I. (1999). The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions.J. Cell Biol.145, 123-139.

Sheff, D.R., Pelletier, L., O'Connell, C.B., Warren, G., and Mellman, I. (2002). Transferrin receptor recycling in the absence of perinuclear recycling endosomes.J. Cell Biol.156, 797-804.

10.1091/mbc.e02-12-0809

Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J., and Zerial, M. (2000). Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11.J. Cell Biol.149, 901-914.

Sugimoto, Y., Ninomiya, H., Ohsaki, Y., Higaki, K., Davies, J.P., Ioannou, Y.A., and Ohno, K. (2001). Accumulation of cholera toxin and GM1 ganglioside in the early endosome of Niemann-Pick C1-deficient cells.Proc. Natl. Acad. Sci. USA98, 12391-12396.

Ullrich, O., Reinsch, S., Urbé, S., Zerial, M., and Parton, R.G. (1996). Rab11 regulates recycling through the pericentriolar recycling endosome.J. Cell Biol.135, 913-924.

van Dam, E.M., Ten Broeke, T., Jansen, K., Spijkers, P., and Stoorvogel, W. (2002). Endocytosed transferrin receptors recycle via distinct dynamin and phosphatidylinositol 3-kinase-dependent pathways.J. Biol. Chem.277, 48876-48883.

van der Sluijs, P., Hull, M., Webster, P., Male, P., Goud, B., and Mellman, I. (1992). The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway.Cell70, 729-740.

Vanier, M.T., and Millat, G. (2003). Niemann-Pick disease type C.Clin. Genet.64, 269-281.

Walter, M., Davies, J.P., and Ioannou, Y.A. (2003). Telomerase immortalization upregulates Rab9 expression and restores LDL cholesterol egress from Niemann-Pick C1 late endosomes.J. Lipid Res.44, 243-253.

Wood, P.A., McBride, M.R., Baker, H.J., and Christian, S.T. (1985). Fluorescence polarization analysis, lipid composition, and Na+,K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis.J. Neurochem.44, 947-956.