Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid
Tài liệu tham khảo
Hu, 2002, Large-scale rapid oxidation synthesis of SnO2 nanoribbons, J. Phys. Chem., B106, 3823, 10.1021/jp0125552
Wang, 2009, Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination, Biosens. Bioelectron., 25, 708, 10.1016/j.bios.2009.08.013
Yang, 2004, Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor, Inorg. Chem. Commun., 7, 176, 10.1016/j.inoche.2003.10.035
Ding, 2010, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection, Biosens. Bioelectron., 26, 542, 10.1016/j.bios.2010.07.050
Li, 2003, Fabrication of titania nanofibers by electrospinning, Nano Lett., 3, 555, 10.1021/nl034039o
Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535
Dohnálek, 2010, Thermally-driven processes on rutile TiO2 (110)-(1×1): a direct view at the atomic scale, Prog. Surf. Sci., 85, 161, 10.1016/j.progsurf.2010.03.001
Feng, 2012, Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires, Angew. Chem. Int. Ed., 51, 2727, 10.1002/anie.201108076
Sanghavi, 2013, Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode, Analyst, 138, 1395, 10.1039/c2an36330e
Zhou, 2006, Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin, Bioelectrochemistry, 69, 34, 10.1016/j.bioelechem.2005.10.003
Armstrong, 2005, Nanotubes with the TiO2-B structure, Chem. Commun., 19, 2454, 10.1039/b501883h
Teo, 2006, A review on electrospinning design and nanofiber assemblies, Nanotechnology, 17, 89, 10.1088/0957-4484/17/14/R01
Li, 2004, Electrospinning of nanofibers: reinventing the wheel?, Adv. Mater., 16, 1151, 10.1002/adma.200400719
Jabal, 2009, Wettability of electrospun poly(vinylpyrrolidone)-titania fiber mats on glass and ITO substrates in aqueous media, ACS Appl. Mater. Interfaces, 1, 2325, 10.1021/am900481d
Li, 2006, Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes, J. Am. Ceram. Soc., 89, 1861, 10.1111/j.1551-2916.2006.00989.x
Dikin, 2007, Preparation and characterization of graphene oxide paper, Nature, 448, 457, 10.1038/nature06016
Cote, 2009, Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 131, 11027, 10.1021/ja902348k
Petit, 2009, Graphite oxide/polyoxometalates nanocomposites as adsorbents of ammonia, J. Phys. Chem. C, 113, 3800, 10.1021/jp8097044
Ramesha, 2007, Exfoliated graphite oxide modified electrode for the selective determination of picomolar concentration of lead, Electroanalysis, 19, 2472, 10.1002/elan.200704005
Ramesh, 2004, Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide, J. Colloid Interface Sci., 274, 95, 10.1016/j.jcis.2003.11.030
Chang, 2010, Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide, Electrochem. Commun., 12, 596, 10.1016/j.elecom.2010.02.008
Grayson, 2010, Parkinson's disease, Nature, S1
Khor, 2007, The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson's disease, Curr. Clin. Pharmacol., 2, 234, 10.2174/157488407781668802
Katzenschlager, 2002, Treatment of Parkinson's disease: levodopa as the first choice, J. Neurol., 249, II/19, 10.1007/s00415-002-1204-4
Barnes, 1988
Hawkins, 2005, An active transport system in the blood–brain barrier may reduce levodopa availability, Exp. Neurol., 195, 267, 10.1016/j.expneurol.2005.04.008
Coello, 2000, Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration, Talanta, 53, 627, 10.1016/S0039-9140(00)00539-7
Karimi, 2006, Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid, J. Chromatogr. B, 836, 120, 10.1016/j.jchromb.2006.03.027
Junior, 2001, Flow injection determination of levodopa in tablets using a solid-phase reactor containing lead(IV) dioxide immobilized, J. Pharm. Biomed. Anal., 25, 393, 10.1016/S0731-7085(00)00516-1
Fang, 2005, Determination of levodopa and benserazidehydrochloride in pharmaceutical formulations by CZE with amperometric detection, Chromatographia, 61, 265, 10.1365/s10337-005-0515-x
Teixeira, 2007, An electrochemical sensor for l-DOPA based on oxovanadium-salen thin film electrode applied flow injection system, Sens. Actuators, B: Chem., 122, 549, 10.1016/j.snb.2006.06.032
Daneshgar, 2009, A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method, Colloids Surf., B: Biointerfaces, 68, 27, 10.1016/j.colsurfb.2008.09.019
Arvand, 2013, A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-DOPA in mouse brain extract and pharmaceuticals, J. Solid State Electrochem., 17, 775, 10.1007/s10008-012-1929-7
Brodie, 1860, On the atomic weight of graphite, Ann. Chim. Phys., 59, 466
Ranjitha, 2013, Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol–gel dip coating method, Optik, 124, 6201, 10.1016/j.ijleo.2013.04.085
Sellappan, 2011, On the mechanism of enhanced photocatalytic activity of composite TiO2/carbon nanofilms, Appl. Catal., B: Environ., 106, 337, 10.1016/j.apcatb.2011.05.036
Abbar, 2012, Development of electrochemical method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids, Ind. Eng. Chem. Res., 51, 111, 10.1021/ie2021812
Goyal, 2010, Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B: Chem., 149, 252, 10.1016/j.snb.2010.05.019
Brun, 1974, Étudeelectrochimique de l’oxydation de la dihydroxy-3,4-phénylalanine (Dopa): mécanismed’oxydation des catéchols en milieu acide, J. Electroanal. Chem., 49, 287, 10.1016/S0022-0728(74)80236-6
Saby, 1998, A Biosensor system for chlorophenols using chloroperoxidase and a glucose oxidase based amperometric electrode, Electroanalysis, 10, 7, 10.1002/(SICI)1521-4109(199801)10:1<7::AID-ELAN7>3.0.CO;2-J
Kalachar, 2011, Electrochemical determination of l-DOPA in Mucunapruriens seeds, leaves and commercial siddha product using gold modified pencil graphite electrode, Electroanalysis, 23, 1107, 10.1002/elan.201000558
Gosser, 1993
Sun, 2012, Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine, Anal. Chim. Acta, 751, 59, 10.1016/j.aca.2012.09.006
Yaghoubian, 2009, Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 4, 993, 10.1016/S1452-3981(23)15201-1
Aslanoglu, 2009, Voltammetric behavior of levodopa and its quantification in pharmaceuticals using a β-cyclodextrine doped poly(2,5-diaminobenzenesulfonic acid) modified electrode,, J. Chem. Sci., 121, 209, 10.1007/s12039-009-0024-9
Beitollahi, 2011, Application of a carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid, Electroanalysis, 23, 1934, 10.1002/elan.201100242
Ardakani, 2012, Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor, Biosens. Bioelectron., 35, 75, 10.1016/j.bios.2012.02.014
Reddaiah, 2012, Electrochemical investigation of l-DOPA and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: a voltammetric study, J. Electroanal. Chem., 682, 164, 10.1016/j.jelechem.2012.07.027