Điện tái chế Kaolinite chứa chì bằng cách sử dụng màng chọn lọc cation và các dung dịch điện phân khác nhau

Water, Air, and Soil Pollution - Tập 224 - Trang 1-9 - 2013
Ravi Naidu1,2, B. R. Sreedaran3, Euan Smith1,2
1Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, Australia
2CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, Mawson Lakes, Australia
3Jerrabomberra, Australia

Tóm tắt

Chiết xuất điện động là một công nghệ nổi bật có thể được sử dụng để loại bỏ ô nhiễm tại chỗ bằng cách áp dụng một trường điện trực tiếp (DC) trên lớp đất bị ô nhiễm. Trong nghiên cứu này, một mẫu kaolinite nhiễm Pb (720 mg kg−1) đã được sử dụng để điều tra việc loại bỏ Pb thông qua chiết xuất điện động trong điều kiện có hoặc không có màng chọn lọc cation (CSM). Kaolinite bị ô nhiễm đã được áp dụng một điện áp DC không đổi (2 V cm−1) trong 4 ngày. Một điện áp DC thấp được áp dụng mà không có CSM đã phát triển một giao diện pH cao trong tế bào điện động. Do đó, tính di động của Pb đã giảm do sự gia tăng đáng kể của giá trị pH. Việc bổ sung CSM đã cải thiện hiệu suất loại bỏ nhưng không thể đạt được pH bề mặt quan trọng (

Từ khóa

#chiết xuất điện động #kaolinite #chì #màng chọn lọc cation #dung dịch điện phân #ô nhiễm đất

Tài liệu tham khảo

Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science and Technology, 27, 2638–2647. Almeira, O. J., Peng, C. S., & Abou-Shady, A. (2012). Simultaneous removal of cadmium from kaolin and catholyte during soil electrokinetic remediation. Desalination, 300, 1–11. Altin, A., & Degirmenci, M. (2005). Lead (II) removal from natural soils by enhanced electrokinetic remediation. Science of the Total Environment, 337, 1–10. Amrate, S., Akretche, D. E., Innocent, C., & Seta, P. (2005). Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction. Science of the Total Environment, 349, 56–66. Baek, K., Kim, D. H., Park, S. W., Ryu, B. G., Bajargal, T., & Yang, J. S. (2009). Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 161, 457–462. Bongay, D. J. R., & Ngo, R. L. (2012). Electroremediation of Cu-contaminated soil. International Journal of Chemical and Biological Engineering, 6, 96–101. Chen, X., Shen, Z., Lei, Y., Ju, B., & Wang, W. (2006). Enhanced electrokinetic remediation of Cd and Pb spiked soil coupled with cation exchange membrane. Soil Research, 44, 523–529. Coletta, T. F., Bruell, C. J., Ryan, D. K., & Inyang, H. I. (1997). Cation-enhanced removal of lead from kaolinite by electro-kinetics. Journal of Environmental Engineering, 123, 1227–1233. Dzenitis, J. M. (1997). Soil chemistry effects and flow predication in electro-remediation of soil. Environmental Science and Technology, 31, 1191–1197. Fernandez, A., Hlavackova, P., Pomès, V., & Sardin, M. (2009). Physico-chemical limitations during the electrokinetic treatment of a polluted soil. Chemical Engineering Journal, 145, 355–361. Giannis, A., Pentari, D., Wang, J. Y., & Gidarakos, E. (2010). Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils. Journal of Hazardous Materials, 184, 547–554. Gidarakos, E., & Giannis, A. (2006). Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water, Air, and Soil Pollution, 172, 295–312. Gu, Y. Y., & Yeung, A. T. (2011). Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater. Journal of Hazardous Materials, 191, 144–149. Hamed, J., Acar, Y. B., & Gale, R. J. (1991). Pb (II) removal from kaolinite by electro-kinetics. Journal of Geotechnical Engineering, 117, 241–270. Kaya, A., & Yukselen, Y. (2005). Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. Journal of Hazardous Materials, 120, 119–126. Lee, H. H., & Yang, J. W. (2000). A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. Journal of Hazardous Materials, 77, 227–240. Li, Z., Yu, J., & Neretnieks, I. (1998). Electroremediation: removal of heavy metals by using cation selective membrane. Environmental Science and Technology, 32, 394–397. Moayedi, H., Huat, B. B. K., Kazemian, S., & Mohammad, T. A. (2012). Effect of stabilizer reagents on zeta potential of kaolinite and its relevance to electrokinetic treatment. Journal of Dispersion Science and Technology, 33, 103–110. Naidu, R., Smith, E., Megharaj, M., Smith, L.H., Sreedaran, B.R., Churchman, G.J., Kookana, R.S., Juhasz, A., Gates, W., Oliver, D.P., Ragusa, S., Taylor, G., & Peter, P. (1999). Options for remediating metal contaminated soils: an overview. In: Johnston, C.D. (Ed.), Proceedings of the Contaminated Site Remediation: Challenges Posed by Urban and Industrial Contaminants. Perth, Australia, 1999, pp. 483–496. Page, M. M., & Page, C. L. (2002). Electroremediation of contaminated soils. Journal of Environmental Engineering, 128, 208–219. Probstein, R. F., & Hicks, R. E. (1993). Removal of contaminants from soils by electric fields. Science, 260, 498–503. Reddy, K., & Chinthamreddy, S. (2003). Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. Journal of Geotechnical and Geoenvironmental Engineering, 129, 263–277. Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., & Xu, C. Y. (1997). Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, 55, 135–158. Reed, B. E., & Berg, M. T. (1994). In-situ electrokinetic remediation of lead contaminated soil: II. Effect of reservoir conditioning. Hazardous and Industrial Wastes, 26, 514–521. Reed, B. E., Berg, M. T., Thompson, J. C., & Hatfield, J. H. (1995). Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam. Journal of Environmental Engineering, 121, 805–815. Ryu, B. G., Park, G. Y., Yang, J. W., & Baek, K. (2011). Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Separation and Purification Technology, 79, 170–176. Shen, Z., Chen, X., Jia, J., Qu, L., & Wang, W. (2007). Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution, 150, 193–199. Vengris, T., Binkienė, R., & Sveikauskaitė, A. (2001). Electrokinetic remediation of lead-, zinc- and cadmium-contaminated soil. Journal of Chemical Technology and Biotechnology, 76, 1165–1170. Virkutyte, J., Sillanpää, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation—critical overview. Science of the Total Environment, 289, 97–121. Yeung, A. T. (2006). Contaminant extractability by electrokinetics. Environmental Engineering and Science, 23, 202–224. Yeung, A. T., & Gu, Y. Y. (2011). A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of Hazardous Materials, 195, 11–29. Yeung, A. T., Hsu, C., & Menon, R. M. (1996). EDTA-enhanced electrokinetic extraction of lead. Journal of Geotechnical Engineering, 122, 666–673. Zhou, D. M., Deng, C. F., & Cang, L. (2004). Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere, 56, 265–273.