Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development
Tóm tắt
Electroporation is a technique for the introduction of nucleic acids and other macromolecules into cells. In chick embryos it has been a particularly powerful technique for the spatial and temporal control of gene expression in developmental studies. Electroporation methods have also been reported for Xenopus, zebrafish, and mouse. We present a new protocol for zebrafish brain electroporation. Using a simple set-up with fixed spaced electrodes and microinjection equipment, it is possible to electroporate 50 to 100 embryos in 1 hour with no lethality and consistently high levels of transgene expression in numerous cells. Transfected cells in the zebrafish brain are amenable to in vivo time lapse imaging. Explants containing transfected neurons can be cultured for in vitro analysis. We also present a simple enzymatic method to isolate whole brains from fixed zebrafish for immunocytochemistry. Building on previously described methods, we have optimized several parameters to allow for highly efficient unilateral or bilateral transgenesis of a large number of cells in the zebrafish brain. This method is simple and provides consistently high levels of transgenesis for large numbers of embryos.
Tài liệu tham khảo
Krull CE: A primer on using in ovo electroporation to analyze gene function. Dev Dyn. 2004, 229 (3): 433-439. 10.1002/dvdy.10473.
Nakamura H, Katahira T, Sato T, Watanabe Y, Funahashi J: Gain- and loss-of-function in chick embryos by electroporation. Mech Dev. 2004, 121 (9): 1137-1143. 10.1016/j.mod.2004.05.013.
Haas K, Jensen K, Sin WC, Foa L, Cline HT: Targeted electroporation in Xenopus tadpoles in vivo--from single cells to the entire brain. Differentiation. 2002, 70 (4-5): 148-154. 10.1046/j.1432-0436.2002.700404.x.
Cerda GA, Thomas JE, Allende ML, Karlstrom RO, Palma V: Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods. 2006, 39 (3): 207-211. 10.1016/j.ymeth.2005.12.009.
Teh C, Chong SW, Korzh V: DNA delivery into anterior neural tube of zebrafish embryos by electroporation. Biotechniques. 2003, 35 (5): 950-954.
Thummel R, Bai S, Sarras MP, Song P, McDermott J, Brewer J, Perry M, Zhang X, Hyde DR, Godwin AR: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn. 2006, 235 (2): 336-346. 10.1002/dvdy.20630.
Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D: High-efficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis. 2002, 32 (1): 27-31. 10.1002/gene.10025.
Saito T, Nakatsuji N: Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol. 2001, 240 (1): 237-246. 10.1006/dbio.2001.0439.
Tabata H, Nakajima K: Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 2001, 103 (4): 865-872. 10.1016/S0306-4522(01)00016-1.
Koster RW, Fraser SE: Tracing transgene expression in living zebrafish embryos. Dev Biol. 2001, 233 (2): 329-346. 10.1006/dbio.2001.0242.
Hutson LD, Chien CB: Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron. 2002, 33 (2): 205-217. 10.1016/S0896-6273(01)00579-7.
Bak M, Fraser SE: Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles. Development. 2003, 130 (20): 4999-5008. 10.1242/dev.00713.
Keeble TR, Cooper HM: Ryk: a novel Wnt receptor regulating axon pathfinding. Int J Biochem Cell Biol. 2006, 38 (12): 2011-2017. 10.1016/j.biocel.2006.07.005.
Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y: Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature. 2006, 439 (7072): 31-37.
Gamse JT, Kuan YS, Macurak M, Brosamle C, Thisse B, Thisse C, Halpern ME: Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development. 2005, 132 (21): 4869-4881. 10.1242/dev.02046.
Aizawa H, Bianco IH, Hamaoka T, Miyashita T, Uemura O, Concha ML, Russell C, Wilson SW, Okamoto H: Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr Biol. 2005, 15 (3): 238-243. 10.1016/j.cub.2005.01.014.
Yanez J, Anadon R: Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (DiI) study. J Comp Neurol. 1996, 372 (4): 529-543. 10.1002/(SICI)1096-9861(19960902)372:4<529::AID-CNE3>3.0.CO;2-6.
Hendricks M, Jesuthasan S: Asymmetric innervation of the habenula in zebrafish. J Comp Neurol.
Lauterbach J, Klein R: Release of full-length EphB2 receptors from hippocampal neurons to cocultured glial cells. J Neurosci. 2006, 26 (45): 11575-11581. 10.1523/JNEUROSCI.2697-06.2006.
D'Souza J, Hendricks M, Le Guyader S, Subburaju S, Grunewald B, Scholich K, Jesuthasan S: Formation of the retinotectal projection requires Esrom, an ortholog of PAM (protein associated with Myc). Development. 2005, 132 (2): 247-256. 10.1242/dev.01578.
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004, 22 (12): 1567-1572. 10.1038/nbt1037.
Rasband WS: ImageJ. 1997, Bethesda, Maryland, USA , U.S. National Institutes of Health, http://rsb.info.nih.gov/ij/
ZFIN: The Zebrafish Model Organism Database. http://zfin.org