Electronic structure of the Zn(O,S)/Cu(In,Ga)Se<sub>2</sub>thin-film solar cell interface

Progress in Photovoltaics: Research and Applications - Tập 24 Số 8 - Trang 1142-1148 - 2016
Michelle Mezher1, Rebekah L. Garris2, Lorelle M. Mansfield2, Kimberly Horsley1, L. Weinhardt3,1,4,5, Douglas A. Duncan1, Monika Blum1, Samantha G. Rosenberg1, Marcus Bär1,6,7, K. Ramanathan2, C. Heske3,1,4,5
1Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154 USA
2National Renewable Energy Laboratory (NREL), Golden, CO, 80401, USA
3ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
4Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
5Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
6Institut für Physik und Chemie; Brandenburgische Technische Universität Cottbus-Senftenberg; 03046 Cottbus Germany
7Renewable Energy; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH; 14109 Berlin Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3% http://www.solar-frontier.com/eng/news/2015/C051171.html

Jackson, 2014, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Physica Status Solidi Rapid Research Letters, 9, 28, 10.1002/pssr.201409520

ZSW raises efficiency of cadmium-free CIGS solar cells to record 21% http://www.semiconductortoday.com/news_items/2015/feb/zsw_250215.shtml

Contreras MA Nakada T Hongo M Pudov OA Sites JR ZnO/ZnS(O,OH)/Cu(In,Ga)Se 2 /Mo solar cell with 18.6% efficiency Proceedings of 3 rd World Conference on Photovoltaic Energy Conversion 2003

Hariskos, 2012, New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells, Progress in Photovoltaics: Research and Applications, 20, 534, 10.1002/pip.1244

Klenk, 2014, Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%, Progress in Photovoltaics: Research and Applications, 22, 161, 10.1002/pip.2445

Bär, 2006, The electronic structure of the [Zn(S,O)/ZnS]/CuInS2 heterointerface - impact of post-annealing, Chemical Physics Letters, 433, 71, 10.1016/j.cplett.2006.11.022

Grimm, 2010, Sputtered Zn(O,S) for junction formation in chalcopyrite-based thin film solar cells, Physical Status Solidi RRL, 4, 109, 10.1002/p22r.201004083

Kieven, 2012, Band alignment at the sputtered ZnSxO1 − x/Cu(In,Ga)(Se,S)2 heterojunctions, Physical Status Solidi RRL, 6, 294, 10.1002/pssr.201206195

Pankow JW Steirer KW Mansfield LM Garris RL Ramanathan K Teeter GR Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40 th 2014 10.1109/PVSC.2014.6925240

Terada, 2014, Characterization of electronic structure of oxysulfide buffers and band alignment at buffer/absorber interfaces in Cu(In,Ga)Se2-based solar cells, Japanese Journal of Applied Physics, 53, 05W09-1, 10.7567/JJAP.53.05FW09

Morkel, 2001, Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction, Applied Physics Letters, 79, 4482, 10.1063/1.1428408

Weinhardt L Morkel M Gleim T Zweigart S Niesen T.P Karg F Heske C Umbach E. Band alignment at the CdS/CuIn(S,Se) 2 heterojunction in thin film solar cells Proceedings 17 th European Photovoltaic Solar Energy Conference 2001

Weinhardt L Fuchs O Groβ D Storch G Dhere NG Kadam AA Kulkarni SS Visbeck S Niesen TP Karg F Heske C Umbach E Comparison of band alignments at various CdS/Cu(In,Ga)(S,Se) 2 interfaces in thin film solar cells Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion 2006

Weinhardt, 2005, Band alignment at the CdS∕Cu(In,Ga)S2 interface in thin-film solar cells, Applied Physics Letters, 86, 062109, 10.1063/1.1861958

Hervé, 1994, General relation between refractive index and energy gap in semiconductors, Infrared Physics Technology, 35, 609, 10.1016/1350-4495(94)90026-4

Srikant, 1998, On the optical band gap of zinc oxide, Journal of Applied Physics, 83, 5447, 10.1063/1.367375

Eicke, 2013, Depth profiling with SNMS and SIMS of Zn(O,S) buffer layers for Cu(In,Ga)Se2 thin-film solar cells, Surface and Interface Analysis, 45, 1811, 10.1002/sia.5325

Platzer-Björkman, 2006, Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: band alignment and sulfur gradient, Journal of Applied Physics, 100, 044506, 10.1063/1.2222067

Meyer, 2004, Structural properties and bandgap bowing of ZnO1 − xSx thin films deposited by reactive sputtering, Applied Physics Letters, 85, 4929, 10.1063/1.1825053

De Melo, 1994, Low resistivity cubic phase CdS films by chemical bath deposition technique, Applied Physics Letters, 65, 1278, 10.1063/1.112094

Contreras, 1999, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells, Progress in Photovoltaics: Research and Applications, 7, 311, 10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G

Ramanathan K Mann J Glynn S Christensen S Pankow J Li J Scharf J Mansfield L Contreras M Noufi R A comparative study of Zn(O,S) buffer layers and CIGS solar cells fabricated by CBD, ALD, and sputtering 2012 38th IEEE Photovoltaic Specialists Conference (PVSC) 2012 10.1109/PVSC.2012.6317918

1990, Practical Surface Analysis, 2nd Edition, vol I, Auger and X-ray Photoelectron Spectroscopy

Weinhardt, 2004, Band alignment at the i-ZnO/CdS interface in Cu(In,Ga)(S,Se)2 thin-film solar cells, Applied Physics Letters, 84, 3175, 10.1063/1.1704877

Duchoslav, 2014, XPS study of zinc hydroxide as a potential corrosion product of zinc: rapid X-ray induced conversion into zinc oxide, Corrosion Science, 82, 356, 10.1016/j.corsci.2014.01.037

Reichardt, 2005, Inducing and monitoring photoelectrochemical reactions at surfaces and buried interfaces in Cu(In,Ga)(S,Se)2 thin film solar cells, Applied Physics Letters, 86, 172102, 10.1063/1.1906309

Wojdyr, 2010, Fityk: a general-purpose peak fitting program, Journal of Applied Crystallography, 43, 1126, 10.1107/S0021889810030499

Denninger, 1979, A VUV isochromat spectrometer for surface analysis, Applied Physics, 18, 375, 10.1007/BF00899691

Gleim, 2003, Formation of the ZnSe/(Te/)GaAs(1 0 0) heterojunction, Surface Science, 531, 77, 10.1016/S0039-6028(03)00439-4

1992, Handbook of X-Ray Photoelectron Spectroscopy

Deroubaix, 1992, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides, Surface and Interface Analysis, 18, 39, 10.1002/sia.740180107

Weinhardt, 2003, Impact of Cd2+-treatment on the band alignment at the ILGAR-ZnO/CuIn(S,Se)2 heterojunction, Thin Solid Films, 431-432, 272, 10.1016/S0040-6090(03)00270-0

Bär, 2009, Chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se2 thin film solar cell absorbers, Applied Physics Letters, 95, 052106, 10.1063/1.3194153

Bär, 2008, Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films, Applied Physics Letters, 93, 244103, 10.1063/1.3046780

Horsley K Pookpanratana S Krause S Hofmann T Blum M Weinhardt L Bär M George K Van Duren J Jackrel D Heske C Electronic and chemical properties of non-vacuum deposited chalcopyrite solar cells Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE 2011 10.1109/PVSC.2011.6185972

Niemegeers, 1995, On the CdS/CuInSe2 conduction band discontinuity, Applied Physics Letters, 67, 843, 10.1063/1.115523

Xiaoxiang, 1996, Calculated effect of conduction-band offset on CuInSe2 solar-cell performance, AIP Conference Proceedings, 353, 444, 10.1063/1.49373

Wei, 1993, Band offsets at the CdS/CuInSe2 heterojunction, Applied Physics Letters, 63, 2549, 10.1063/1.110429