Electronic structure and possible martensitic transformation in Ni2FeIn alloy

Walter de Gruyter GmbH - Tập 32 - Trang 396-401 - 2016
Yungao Gu1, Fang Xue1, Guoqing Zhao1, Guodong Liu2, Yang Liu3, Songtao Li3
1Department of Physics and Electrical Engineering, Handan College, Handan, P.R.China
2School of Material Science and Engineering, Hebei University of Technology, Tianjin, P. R. China
3School of Mathematics and Physics, North China Electric Power University, Baoding, P.R. China

Tóm tắt

The electronic structure and magnetic properties of Heusler alloys (Ni2FeIn) have been studied by first principle calculations. The possible tetragonal martensitic transformation has been predicted and the structure optimization was made on cubic austenitic Ni2FeIn in Cu2MnAl type. The equilibrium lattice constant of austenitic Ni2FeIn is 6.03 Å. In tetragonal phase, the global energy minimum occurs at c/a = 1.29. The corresponding equilibrium lattice constants for martensite Ni2FeIn are a = b = 5.5393 Å and c = 7.1457 Å, respectively. In the austenitic phase, E F is located at the peak in the minority DOS for c/a = 0.96 to 1.20, but in the martensitic phase, E F moves to the bottom of the valley in the minority DOS, reducing the value of N(E F ) effectively. Both austenitic and martensitic phases are ferromagnetic and the Ni and Fe partial moments contribute mainly to the total moments. Therefore, the martensitic transformation behavior in Ni2FeIn is predicted.

Tài liệu tham khảo

Ullakko K., Huang J.K., Kantner C., O’Handley R.C., Kokorin V.V., Appl. Phys. Lett., 69 (1996), 1966. Zayak A.T., Entel P., J. Magn. Magn. Mater., 290–291 (2005), 874. Luo H.Z., Meng F.B., Liu G.D., Liu H.Y., Jia P.Z., Liu E.K., Wang W.H., Wu G.H., Intermetallics, 38 (2013), 139. Wuttig M., Li J., Craciunescu C., Scripta Mater., 44 (2001), 2393. Martynov V.V., Kokorin V.V., Ann. Phys.-Paris, 2 (1992), 739. Entel P., Gruner M.E., Adeagbo W.A., Ecklund C.J., Zayak A.T., Akai H., Acet M., J. Magn. Magn. Mater., 310 (2007), 2761. Liu Z.H., Hu H.N., Liu G.D., Cui Y.T., Zhang M., Chen J.L., Wu G.H., Xiao G., Phys. Rev. B, 69 (2004), 134415. Fujita A., Fukamichi K., Gejima F., Kainuma R., Isshida K., Appl. Phys. Lett., 77 (2001), 3054. Sutou Y., Imano Y., Koeda N., Omori T., Kainuma R., Ishida K., Oikawa K., Appl. Phys. Lett., 85 (2004), 4358. Kainuma R., Imano Y., Ito W., Sutou Y., Morito H., Okamoto S., Kitakami O., Fujita A., Kanomata T., Ishida K., Nature, 439 (2006), 957. Murray S.J., Marioni M., Allen S.M., O’handley R.C., Lograsso T.A., Appl. Phys. Lett., 77 (2000), 886. Luo H.Z., Liu G.D., Meng F.B., Li S.J., Zhu W., Wu G.H., Zhu X.X., Jiang C.B., Physica B, 405 (2010), 3092. Dai X.F., Wang H.Y., Chen L.J., Duan X.F., Chen J.L., Wu G.H., Zhu H., Xiao J.Q., J. Cryst. Growth, 290 (2006), 626. Luo H.Z., Jia P.Z., Liu G.D., Meng F.B., Liu H.Y., Liu E.K., Wang W.H., Wu G.H., Solid State Commun., 170 (2013), 44. Payne M.C., Teter M.P., Allan D.C., Arias T.A., Joannopoulos J.D., Rev. Mod. Phys., 64 (1992), 1065. Segall M.D., Lindan P.L.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C., J. Phys.-Condens. Mat., 14 (2002), 2717. Vanderbilt D., Phys. Rev. B, 41 (1990), 7892. Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 77 (1996), 3865. Kandpal H.C., Fecher G.H., Felser C., J Phys. D Appl. Phys., 40 (2007), 1507. Liu Z.H., Zhang M., Cui Y.T., Zhou Y.Q., Wang W.H., Wu G.H., Zhang X.X., Xiao G., Appl. Phys. Lett., 82 (2003), 424. Krenke T., Acet M., Wassermann E.F., Moya X., Mañosa L., Planes A., Phys. Rev. B, 73 (2006), 174413. Chakrabarti A., Barman S.R., Appl. Phys. Lett., 94 (2009), 161908. Galanakis I., Dederichs P.H., Papanikolaou N., Phys. Rev. B, 66 (2002), 134428. Fujii S., Ishida S., Asano S., J. Phys. Soc. Jpn., 58 (1989), 3657.