Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+

Journal of Chemical Physics - Tập 49 Số 10 - Trang 4424-4442 - 1968
W. T. Carnall1, P. R. Fields1, K. Rajnak1
1Chemistry Division, Argonne National Laboratory, Argonne, Illinois

Tóm tắt

The free-ion energy-level schemes of the Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ aquo ions have been determined from their absorption spectra in dilute acid solution at 25°. Energy-level assignments were made by comparison with crystal spectra, and on the basis of correlations between calculated and observed band intensities. For most of the ions, it was possible to identify several transitions giving rise to bands at energies as high as 45 000–50 000 cm−1. Sufficient numbers of assignments were made to justify inclusion of the effects of configuration interaction in the calculation of the energy-level parameters. Variation of the electrostatic, spin–orbit coupling, and configuration-interaction parameters across the lanthanide series is examined.

Từ khóa


Tài liệu tham khảo

1907, Radium, 4, 328, 10.1051/radium:0190700409032801

1908, 5, 5

1908, Radium, 5, 227, 10.1051/radium:0190800508022701

1929, Ann. Physik, 3, 133

1942, Rev. Mod. Phys., 14, 105, 10.1103/RevModPhys.14.105

1934, Z. Anorg. Algem. Chem., 220, 107, 10.1002/zaac.19342200112

1937, Phys. Rev., 12, 454

1942, Phys. Rev., 62, 438, 10.1103/PhysRev.62.438

1953, J. Chem. Phys., 21, 637, 10.1063/1.1698982

1963, Appl. Opt., 2, 675, 10.1364/AO.2.000675

1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

1965, J. Chem. Phys., 42, 3797, 10.1063/1.1695840

1967, Advan. Chem. Ser., 71, 86, 10.1021/ba-1967-0071.ch007

1957, Proc. Roy. Soc. (London), A240, 509

1964, J. Chem. Phys., 41, 565, 10.1063/1.1725909

1965, J. Chem. Phys., 43, 847, 10.1063/1.1696857

1965, Phys. Rev., 14, 731

1965, J. Chem. Phys., 43, 2047, 10.1063/1.1697073

1967, J. Chem. Phys., 46, 3532, 10.1063/1.1841254

1963, Phys. Rev., 132, 280, 10.1103/PhysRev.132.280

1964, J. Opt. Soc. Am., 54, 651, 10.1364/JOSA.54.000651

1952, Phys. Rev., 85, 381

1965, J. Opt. Soc. Am., 55, 126, 10.1364/JOSA.55.000126

1968, J. Chem. Phys., 49, 4412, 10.1063/1.1669892

1961, J. Chem. Phys., 34, 1602, 10.1063/1.1701052

1960, J. Chem. Phys., 33, 1616, 10.1063/1.1731471

1965, J. Chem. Phys., 42, 3214, 10.1063/1.1696401

1962, J. Phys. Chem., 66, 2159, 10.1021/j100817a020

1963, J. Phys. Chem., 67, 1206, 10.1021/j100800a010

1964, J. Phys. Chem., 68, 2351, 10.1021/j100790a055

1964, Mol. Phys., 8, 281, 10.1080/00268976400100321

1966, J. Chem. Phys., 44, 839, 10.1063/1.1726774

1965, J. Chem. Phys., 42, 371, 10.1063/1.1695702

1962, Phys. Letters, 2, 186, 10.1016/0031-9163(62)90078-1

1965, J. Chem. Phys., 43, 2124, 10.1063/1.1697083

1960, J. Inorg. Nucl. Chem., 14, 303, 10.1016/0022-1902(60)80285-0

1962, J. Chem. Phys., 37, 2354, 10.1063/1.1733010

1964, J. Chem. Phys., 41, 1225, 10.1063/1.1726054

1962, J. Chem. Phys., 36, 2951, 10.1063/1.1732407

1961, J. Chem. Phys., 35, 555, 10.1063/1.1731968

1960, J. Chem. Phys., 32, 1178, 10.1063/1.1730870

1960, J. Chem. Phys., 32, 1531, 10.1063/1.1730954

1961, J. Chem. Phys., 34, 1182, 10.1063/1.1731717

1962, J. Chem. Phys., 37, 1496, 10.1063/1.1733314

1965, Phys. Rev., 139, A2008, 10.1103/PhysRev.139.A2008

1962, Phys. Rev., 127, 2058, 10.1103/PhysRev.127.2058

1966, J. Chem. Phys., 44, 4063, 10.1063/1.1726582

1964, Phys. Rev., 134, A32

1965, Phys. Rev., 139, A43, 10.1103/PhysRev.139.A43

1966, J. Res. Natl. Bur. Std., A70, 435