Hạn chế và Độ đồng nhất Điện tử trong Graphene Epitaxial Có Mẫu
Tóm tắt
Graphene epitaxial mỏng siêu mịn đã được phát triển trên silicon carbide đơn tinh thể bằng cách graphit hóa chân không. Vật liệu này có thể được tạo hình bằng các phương pháp nanolithography tiêu chuẩn. Các đặc tính vận chuyển, có mối liên hệ chặt chẽ với các loại ống nanot carbon, chủ yếu được xác định bởi lớp graphene epitaxial đơn lẻ tại giao diện silicon carbide và cho thấy tính chất Dirac của các hạt mang điện. Các cấu trúc có mẫu cho thấy hiện tượng hạn chế lượng tử của electron và chiều dài tương hợp pha vượt quá 1 micromet ở nhiệt độ 4 kelvin, với độ linh hoạt vượt quá 2.5 mét vuông trên volt-giây. Các thiết bị điện tử hoàn toàn bằng graphene đồng nhất và kiến trúc thiết bị được dự kiến sẽ phát triển.
Từ khóa
#Graphene epitaxial mỏng #silicon carbide #graphit hóa chân không #vận chuyển điện tử #hạn chế lượng tử #độ đồng nhất phaTài liệu tham khảo
B. T. Kelly Physics of Graphite (Applied Science London 1981).
The momentum is with reference to the K point in graphene i.e. E = v 0 ħ | k – k ( K )| where k is the wave vector.
Carbon nanotubes are a specific example of confined graphene where the momentum perpendicular to the axis is quantized according to k perp = n / D where D is the diameter.
Cree Inc. High Purity R Grade 4H SiC.
J. Hass et al . arxiv.org/abs/cond-mat/0604206 (2006).
K. Wakabayashi, Phys. Rev. B64, 12 (2001).
C. W. J. Beenakker H. van Houten Quantum Transport in Semiconductor Nanostructures vol. 44 (Academic Press New York 1991) and reference therein (also available at arxiv.org/abs/cond-mat/0412664).
D. E. Soule, Phys. Rev.1, 708 (1958).
Equation 1 is obtained by applying the interpolation scheme of ( 27 ) to Dirac electrons. Applying the Schrödinger equation H |ψ 〉 = E |ψ 〉 twice gives H eff |ψ 〉 = E eff |ψ 〉 with H eff = H 2 and E eff = E 2 . It can be shown that H eff = H 2 describes free-like electrons close to the band edges (either from the Dirac equation or the tight-binding model; the origin of energies is taken at the band edges). Using the square root interpolation formula of ( 27 ) applied to H eff = H 2 gives \batchmode \documentclass[fleqn 10pt legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathbf{\mathit{E}}_{n}=\sqrt{\mathbf{\mathit{E}}_{\mathrm{eff}_{n}}}\) \end{document} for the energies at the bottom of band n .
N. M. R. Peres A. H. Castro Neto F. Guinea arxiv.org/abs/cond-mat/0603771 (2006).
We follow the convention of indexing the MR peaks ( 24 25 ) rather than the valleys.
I. M. Lifshitz, A. M. Kosevich, Sov. Phys. JETP2, 636 (1956).
B. L. Altshuler A. G. Aronov Eds. Electron-Electron Interactions in Disordered Systems (Elsevier Amsterdam 1985).
N. M. R. Peres F. Guinea A. H. Castro Neto arxiv.org/abs/cond-mat/0512091 (2005).
Supported by NSF grant 0404084 U.S. Department of Energy grant DE-FG02-02ER45956 a grant from Intel Research Corporation and a USA-France travel grant from CNRS. We acknowledge discussions with J. D. Meindl and help from the staff of the Georgia Tech MIRC clean room. Any opinions findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the research sponsors.