Electron transport in a GaPSb film

Nanoscale Research Letters - Tập 7 - Trang 1-5 - 2012
Shun-Tsung Lo1, Hung En Lin2, Shu-Wei Wang2, Huang-De Lin2,3, Yu-Chung Chin4, Hao-Hsiung Lin4,5, Jheng-Cyuan Lin2, Chi-Te Liang1,2
1Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
2Department of Physics, National Taiwan University, Taipei, Taiwan
3Electronics Testing Center, Taoyuan County, Taiwan
4Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
5Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Tóm tắt

We have performed transport measurements on a gallium phosphide antimonide (GaPSb) film grown on GaAs. At low temperatures (T), transport is governed by three-dimensional Mott variable range hopping (VRH) due to strong localization. Therefore, electron–electron interactions are not significant in GaPSb. With increasing T, the coexistence of VRH conduction and the activated behavior with a gap of 20 meV is found. The fact that the measured gap is comparable to the thermal broadening at room temperature (approximately 25 meV) demonstrates that electrons can be thermally activated in an intrinsic GaPSb film. Moreover, the observed carrier density dependence on temperature also supports the coexistence of VRH and the activated behavior. It is shown that the carriers are delocalized either with increasing temperature or magnetic field in GaPSb. Our new experimental results provide important information regarding GaPSb which may well lay the foundation for possible GaPSb-based device applications such as in high-electron-mobility transistor and heterojunction bipolar transistors.

Tài liệu tham khảo

Stringfellow GB: Miscibility gaps in quaternary III/V alloys. J Cryst Growth 1982, 58: 194. 10.1016/0022-0248(82)90226-3 Stringfellow GB: Calculation of ternary and quaternary III–V phase diagrams. J Cryst Growth 1974, 27: 21. Pessetto JR, Stringfellow GB: AlxGa1−xAsySb1−y phase diagram. J Cryst Growth 1983, 62: 1. 10.1016/0022-0248(83)90002-7 Waho T, Ogawa S, Maruyama S: GaAs1-xSbx(0.3<x<0.9) grown by molecular beam epitaxy. Jpn J Appl Phys 1977, 16: 1875. 10.1143/JJAP.16.1875 Jou MJ, Cherng YT, Jen HR, Stringfellow GB: Organometallic vapor phase epitaxial growth of a new semiconductor alloy: GaP1-xSbx. Appl Phys Lett 1988, 52: 549. 10.1063/1.99413 Shlimak I, Friedland KJ, Baranovskii SD: Hopping conductivity in gated δ-doped GaAs: universality of prefactor. Solid State Commun 1999, 112: 21. 10.1016/S0038-1098(99)00286-0 Khondaker SI, Shlimak IS, Nicholls JT, Pepper M, Ritchie DA: Two-dimensional hopping conductivity in a δ-doped GaAs/AlxGa1-xAs heterostructure. Phys Rev B 1999, 59: 4580. 10.1103/PhysRevB.59.4580 Faran O, Ovadyahu Z: Magnetoconductance in the variable-range-hopping regime due to a quantum-interference mechanism. Phys Rev B 1988, 38: 5457. 10.1103/PhysRevB.38.5457 Sivan U, Entin-Wohlman O, Imry Y: Orbital magnetoconductance in the variable-range–hopping regime. Phys Rev Lett 1988, 60: 1566. 10.1103/PhysRevLett.60.1566 Entin-Wohlman O, Imry Y, Sivan U: Orbital magnetoconductance in the variable-range-hopping regime. Phys Rev B 1989, 40: 8342. 10.1103/PhysRevB.40.8342 Tremblay F, Pepper M, Ritchie D, Peacock DC, Frost JEF, Jones GAC: Negative magnetoresistance in the variable-range-hopping regime in n-type GaAs. Phys Rev B 1989, 39: 8059. 10.1103/PhysRevB.39.8059 Raikh ME, Czingon J, Ye Q-y, Koch F, Schoepe W, Ploog K: Mechanisms of magnetoresistance in variable-range-hopping transport for two-dimensional electron systems. Phys Rev B 1992, 45: 6015. 10.1103/PhysRevB.45.6015 Yildiz A, Lisesivdin SB, Altuntas H, Kasap M, Ozcelik S: Electrical conduction properties of Si δ-doped GaAs grown by MBE. Physica B 2009, 404: 4202. 10.1016/j.physb.2009.07.190 Frigeri C, Shakhmin A, Vinokurov D, Zamoryanskaya M: Chemical characterization of extra layers at the interfaces in MOCVD InGaP/GaAs junctions by electron beam methods. Nanoscale Res Lett 2011, 6: 194. 10.1186/1556-276X-6-194 Chin YC, Lin HH, Huang CH, Tseng MN: In0.46Ga0.54P0.98Sb0.02/GaAs: its band offset and application to heterojunction bipolar transistor. IEEE Electron Device Lett 2010, 31: 434. Chin YC, Lin HH, Huang CH: InGaP/GaAs0.57P0.28Sb0.15/GaAs double HBT with weakly type-II base/collector junction. IEEE Electron Device Lett 2012, 33: 489. Jou MJ, Cherng YT, Jen HR, Stringfellow GB: OMVPE growth of the new semiconductor alloys GaP1−xSbx and InP1−xSbx. J Cryst Growth 1988, 93: 62. 10.1016/0022-0248(88)90507-6 Simmons MY, Hamilton AR, Pepper M, Linfield EH, Rose PD, Ritchie DA: Weak localization, hole-hole interactions, and the “metal”-insulator transition in two dimensions. Phys Rev Lett 2000, 84: 2489. 10.1103/PhysRevLett.84.2489 Lo S-T, Chen KY, Su Y-C, Liang CT, Chang YH, Kim G-H, Wu JY, Lin S-D: Crossover from negative to positive magnetoresistance in a Si delta-doped GaAs single quantum well. Solid State Commun 2010, 150: 1104. 10.1016/j.ssc.2010.03.030 Look DC, Walters DC, Manasreh MO, Sizelove JR, Stutz CE, Evans KR: Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: hopping in a dense EL2-like band. Phys Rev B 1990, 42: 3578. 10.1103/PhysRevB.42.3578 Shklovskii BI, Elfros AL: Electronic Properties of Doped Semiconductors. Berlin: Springer; 1984. Look DC: Electrical Characterization of GaAs Materials and Devices. New York: Wiley; 1989. Benzaquen M, Walsh D: Variable-range-hopping conductivity in compensated n-type GaAs. Phys Rev B 1984, 30: 7287. 10.1103/PhysRevB.30.7287