Electron beam welding of aluminum to copper: mechanical properties and their relation to microstructure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dilthey U, Stein L (2006) Multimaterial car body design: challenge for welding and joining. Sci Technol Weld Join 11(2):135–142
Zhao Y, Li D, Zhang Y (2013) Effect of welding energy on interface zone of Al-Cu ultrasonic welded joint. Sci Technol Weld Join 18(4):354–360
Hailat M, Mian A, Chaudhury Z, Newaz G, Patwa R, Herfurth H (2012) Laser micro-welding of aluminum and copper with and without tin foil alloy. Microsyst Technol 18:103–112
Gröbner J (2004) Al-Cu binary phase diagram evaluation. MSI, Materials Science International Services GmbH, Stuttgart
Mai TA, Spowage AC (2004) Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminum. Mater Sci Eng A 374:224–233
Lee SJ, Nakumura H, Kawahito Y, Katayama S (2014) Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets. Sci Technol Weld Join 19(2):111–118
M Weigl, A Grimm, M Schmidt (2011) Laser-welded connections for high-power electronics in mobile systems. Electr Drives Prod Conf (EDPC) 88–92
Tan C, Jiang ZG, Li L, Chen Y, Chen X (2013) Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding. Mater Des 51:466–473
Lee W-B, Bang KS, Jung S-B (2005) Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/al bimetallic joints during annealing. J Alloys Compd 390:212–219
Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol 59(3):257–267
A Backhaus, S Ufer, J. de Vries (2013) Präzise Vermessung des Elektronenstrahls mit einem neuartigen Sensor - Technologietransfer gelungen! in Im Blickpunkt - Deutschlands Elite Institute: Institut für Schweißtechnik und Fügetechnik der RWTH Aachen University, Aachen, Institut für Wissenschaftliche Veröffentlichungen und der ALPHA Imformationsgesellschaft mbH, 40–42
Zürn H, Dorn L (1966) Untersuchungen über das Schweißen unterschiedlicher Metalle mit dem Elektronenstrahl. DVS-Berichte 1:69–87
Bandov H (1971) Beitrag zum Verbinden von Aluminum mit Kupfer durch Elektronenstrahlschweißen. Schweißen und Schneiden 23(7):274–277
Sánchez-Amaya JM, Boukha Z, Amaya-Vázquez MR, Botana FJ (2012) Weldability of aluminum alloys with high-power diode laser. Weld J 91:155–161
Lee CH, Kim SW, Yoon EP (2000) Electron beam welding characteristics of high strength aluminum alloys for express train applications. Sci Technol Weld Join 5(5):277–283
N. N., DIN EN ISO 4136 (2013) Zerstörende Prüfung von Schweißverbindungen an metallischen Werkstoffen. Deutsches Institut für Normung e.V, Berlin
Xia C, Li Y, Puchkov UA, Gerasimov SA, Wang J (2008) Microstructure and phase constitution near the interface of Cu-Al vacuum brazing using Al-Si filler metal. Vacuum 82:799–804
Aravind M, Yu P, Yau MY, Ng DH (2004) Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites bey reaction sintering. Mater Sci Eng A 380:384–393
Massalaski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Ohio
Chen C-Y, Chen H-L, Hwang W-S (2006) Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum-copper bimetal plate. Mater Trans 47(4):1232–1239
Genevois C, Girard M, Huneau B, Sauvage X, Racineux G (2011) Interfacial reaction during friction stir welding of Al and Cu. Metall Mater Trans A 42A:2290–2295
Lee KS, Lee SE, Sung HK, Lee DH, Kim JS, Chang YW, Lee S, Kwon YN (2013) Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets. Mater Sci Eng A 583:177–181
Abassi M, Taheri AK, Salehi MT (2000) Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process. Alloy Compounds 319:233–241
Gueydan A, Domengés B, Hug E (2014) Study of intermetallic growth in copper-clad aluminum wires after thermal aging. Intermetallics 50:34–42
Spittel M, Spittel T (2011) “Al99,5”, in The Landolt-Börnstein Database. Springer-Verlag, Berlin Heidelberg, pp 1–7
Lui HJ, Shen JJ, Zhou L, Thao YQ, Lui C, Kuang LY (2011) Microstructural characterisation and mechanical properties of friction stir welded joints of aluminum alloy to copper. Sci Technol Weld Join 16(1):92–98
Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Mater Proc Technol 172(1):110–122
DA Schauer, WH Gied, SM Shintaku (1987) Electron beam welding cavity temperature distributions in pure metals and alloys. Weld J 127–133
Chen C-Y, Hwang W-S (2007) Effect of annealing on the interfacial structure of aluminum-copper joints. Mater Trans 48(7):1938–1947
C Otten, U Reisgen, J Schönberger (2014) Investigations about the influence of the time-temperature curve on the formation of intermetallic phases during electron beam welding of steel-aluminum material combination, Weld World
Zhang Y, Yamane T, Hirao K, Minamino Y (1991) Microstructures and Vickers hardness of rapidly solidified Al-Cu alloys near the Al-Al2Cu equilibrium eutectic composition. J Mater Sci 26:5799–5805
Sarvghad-Moghaddam M, Parvizi R, Davoodi A, Haddad-Sabzevar M, Imani A (2014) Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM-EDS and AFM-SKPFM. Corrsion Sci 79:148–158