Electron acoustic waves in a magnetized plasma with kappa distributed ions

Physics of Plasmas - Tập 19 Số 8 - 2012
S. Devanandhan1, S. V. Singh1,2, G. S. Lakhina1, R. Bharuthram3
1Indian Institute of Geomagnetism 1 , Navi Mumbai, India
2University of Kwazulu-Natal 2 School of Physics, , Durban, South Africa
3University of the Western Cape 3 , Bellville, South Africa

Tóm tắt

Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index κ and electron to ion temperature ratio σ alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

Từ khóa


Tài liệu tham khảo

1976, J. Geophys. Res., 81, 6059, 10.1029/JA081i034p06059

1979, J. Geophys. Res., 84, 2029, 10.1029/JA084iA05p02029

1985, J. Geophys. Res., 90, 6327, 10.1029/JA090iA07p06327

1986, Astrophys. J., 308, 954, 10.1086/164563

1970, Sov. Phys. Tech. Phys., 14, 1487

1973, Sov. Phys. JETP, 37, 1051

1973, Nucl. Fusion, 13, 193, 10.1088/0029-5515/13/2/007

1974, Theory of Plasma Instabilities, 151, 10.1007/978-1-4899-4785-7_8

1983, Phys. Lett. A, 97, 387, 10.1016/0375-9601(83)90671-0

1982, J. Plasma Phys., 27, 303, 10.1017/S0022377800026611

1982, Phys. Lett. A, 89, 13, 10.1016/0375-9601(82)90134-7

1984, Phys. Fluids, 27, 399, 10.1063/1.864633

1984, Phys. Fluids, 27, 2918, 10.1063/1.864607

1986, J. Plasma Phys., 36, 295, 10.1017/S0022377800011764

1980, Plasma Phys., 22, 873, 10.1088/0032-1028/22/9/002

1980, J. Plasma Phys., 23, 341, 10.1017/S0022377800022364

1987, Pramana, J. Phys., 28, 399, 10.1007/BF02847101

1994, Phys. Plasmas, 1, 3189, 10.1063/1.870472

1968, J. Geophys. Res., 73, 2839, 10.1029/JA073i009p02839

1991, Phys. Fluids B, 3, 2117, 10.1063/1.859624

1999, Phys. Plasmas, 6, 44, 10.1063/1.873256

2010, Astrophys. Space Sci., 330, 295, 10.1007/s10509-010-0404-0

2011, Phys. Plasmas, 18, 072902, 10.1063/1.3606365

2011, Phys. Scr., 84, 025507, 10.1088/0031-8949/84/02/025507

2011, Plasma Phys. Controlled Fusion, 53, 045003, 10.1088/0741-3335/53/4/045003

2011, Nonlinear Proc. Geophys., 18, 627, 10.5194/npg-18-627-2011

2008, Eur. Phys. J. D, 49, 217, 10.1140/epjd/e2008-00165-4

1993, J. Geophys. Res., 98, 5881, 10.1029/92JA02900

2003, New J. Phys., 5, 28, 10.1088/1367-2630/5/1/328

2010, Phys. Plasmas, 17, 032310, 10.1063/1.3322895

2007, Astrophys. Space Sci. Trans., 3, 15, 10.5194/astra-3-15-2007

1998, Geophys. Res. Lett., 25, 2929, 10.1029/98GL02111

1978, Geophys. Res. Lett., 5, 957, 10.1029/GL005i011p00957