Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

Physics of Plasmas - Tập 23 Số 8 - 2016
S. V. Singh1,2, S. Devanandhan1, G. S. Lakhina1,2, R. Bharuthram2
1Indian Institute of Geomagnetism 1 , New Panvel (W), Navi Mumbai, India
2University of the Western Cape 2 , Belville, South Africa

Tóm tắt

A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.

Từ khóa


Tài liệu tham khảo

1977, J. Phys. Soc. Jpn., 43, 1819, 10.1143/JPSJ.43.1819

1986, Astrophys. J., 308, 954, 10.1086/164563

1984, Geophys. Res. Lett., 11, 1180, 10.1029/GL011i012p01180

1985, Phys. Fluids, 28, 2439, 10.1063/1.865250

1986, J. Geophys. Res., 91, 8001, 10.1029/JA091iA07p08001

1989, Geophys. Res. Lett., 16, 899, 10.1029/GL016i008p00899

2001, Adv. Space. Res., 28, 1643, 10.1016/S0273-1177(01)00479-3

2004, Phys. Plasmas, 11, 1996, 10.1063/1.1689964

2009, Adv. Space Res., 43, 1940, 10.1016/j.asr.2009.02.015

1994, Geophys. Res. Lett., 21, 2915, 10.1029/94GL01284

1991, J. Plasma Phys., 45, 323, 10.1017/S0022377800015749

1991, J. Geophys. Res., 96, 3565, 10.1029/90JA02355

1993, J. Geophys. Res., 98, 17415, 10.1029/93JA01611

1999, Geophys. Res. Lett., 26, 2629, 10.1029/1999GL900462

2001, Planet. Space Sci., 49, 107, 10.1016/S0032-0633(00)00126-4

2011, Phys. Plasmas, 18, 122306, 10.1063/1.3671955

1991, Geophys. Res. Lett., 18, 155, 10.1029/90GL02677

2000, Phys. Plasmas, 7, 2987, 10.1063/1.874150

2002, Phys. Plasmas, 9, 1474, 10.1063/1.1462635

2004, Nonlinear Processes Geophys., 11, 275, 10.5194/npg-11-275-2004

2007, Phys. Plasmas, 14, 052305, 10.1063/1.2732176

2009, Adv. Space Res., 43, 1945, 10.1016/j.asr.2009.03.005

2008, Phys. Plasmas, 15, 062903, 10.1063/1.2930469

2008, Nonlinear Processes Geophys., 15, 903, 10.5194/npg-15-903-2008

2009, J. Geophys. Res., 114, A09212, 10.1029/2009JA014306

2011, Adv. Space. Res., 47, 1558, 10.1016/j.asr.2010.12.013

1980, Plasma Phys., 22, 873, 10.1088/0032-1028/22/9/002

1980, J. Plasma Phys., 23, 341, 10.1017/S0022377800022364

1980, J. Plasma Phys., 24, 169, 10.1017/S0022377800022716

2003, Geophys. Res. Lett., 30, 2148, 10.1029/2003GL018491

2004, Geophys. Res. Lett., 31, L07803, 10.1029/2004GL019533

2004, Nonlinear Processes Geophys., 11, 215, 10.5194/npg-11-215-2004

2008, J. Geophys. Res., 113, A06218, 10.1029/2007JA012768

1968, J. Geophys. Res., 73, 2839, 10.1029/JA073i009p02839

1988, J. Stat. Phys., 52, 479, 10.1007/BF01016429

1995, Geophys. Res. Lett., 26, 425, 10.1029/95GL02781

1987, Geophys. Res. Lett., 14, 111, 10.1029/GL014i002p00111

1989, J. Plasma Phys., 41, 139, 10.1017/S0022377800013726

2001, Phys. Plasmas, 8, 2649, 10.1063/1.1363665

2015, Commun. Nonlinear Sci. Numer. Simul., 22, 1322, 10.1016/j.cnsns.2014.07.026