Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

American Association for the Advancement of Science (AAAS) - Tập 353 Số 6304 - Trang 1137-1140 - 2016
Faisal Shahzad1,2, Mohamed Alhabeb3, Christine B. Hatter3, Babak Anasori3, Soon Man Hong1, Chong Min Koo1,2, Yury Gogotsi3
1Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
2Nanomaterials Science and Engineering, University of Science and Technology, 217, Gajung-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
3Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

Tóm tắt

Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti 3 C 2 T x film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti 3 C 2 T x films (4600 Siemens per centimeter) and multiple internal reflections from Ti 3 C 2 T x flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201204196

10.1002/adfm.201403809

10.1002/adma.201305293

10.1002/adma.201405788

10.1289/ehp.98106101

10.1016/S0008-6223(00)00184-6

10.1002/pen.21384

10.1016/j.carbon.2013.04.008

10.1021/am200021v

10.1016/j.mser.2013.06.001

10.1039/C5TC01354B

10.1002/adma.201304138

10.1126/science.1241488

10.1021/acsnano.5b03591

10.1002/adfm.201505328

10.1073/pnas.1414215111

BootaM.AnasoriB.VoigtC.ZhaoM. Q.BarsoumM. W.GogotsiY., Pseudocapacitive Electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D Titanium Carbide (MXene). Adv. Mater. 28, 1517–1522 (2016).26660424

10.1126/science.1209150

B. Anasori et al . Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons 1 227–234 (2016).

10.1002/adfm.201202502

10.1016/j.carbon.2008.12.038

F. Shahzad P. Kumar Y.-H. Kim S. M. Hong C. M. Koo Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Interfaces 8 9361–9369 (2016).

10.1016/j.carbon.2015.10.004

10.1021/ie500512d

10.1021/jp710259v

10.1016/j.jmmm.2011.12.038

10.1021/am500445g

B. Shen Y. Li W. Zhai W. Zheng Compressible graphene-coated polymer foams with ultra-low density for adjustable EMI shielding. ACS Appl. Mater. Interfaces 8 8050–8057 (2016).

10.1021/nl051375r

10.1002/adfm.201503782

10.1002/adfm.201503579

10.1002/adfm.201400079

10.1002/adma.201102306

10.1038/nature13970

K. Wenderoth J. Petermann K. D. Kruse J. L. ter Haseborg W. Krieger Synergism on electromagnetic inductance (EMI)-shielding in metal-and ferroelectric-particle filled polymers. Polymer Composites 10 52-56 (1989).

10.1080/03602558108067695

10.1021/am303289m

10.1039/c3nr06717c

10.1016/j.carbon.2014.03.051

10.1021/am502412q

10.1039/c2jm32692b

10.1088/0022-3727/45/23/235108

10.1016/j.compstruct.2015.07.036

10.1021/acsami.5b05890

10.1039/C4RA17230B

10.1016/j.carbon.2014.10.080

10.1016/j.carbon.2015.07.032

10.1016/j.carbon.2016.02.040

10.1039/C3TA14212D

10.1039/C5CP02476E

10.1039/c3nr33962a

10.1016/j.carbon.2012.04.030

10.1039/C5RA01046B

10.1021/am4036527

10.1039/c3ta14854h

10.1039/C4TA05939E

10.1039/C4TA01681E

10.1039/C5TC03035H

10.1039/C4CP04284K

10.1016/j.carbon.2014.12.065

10.1016/j.compositesb.2015.09.001

10.1002/adv.10040

10.1039/C4RA11332B

10.1002/pen.21163

10.1016/j.carbon.2011.06.008

10.1002/app.33248

10.1016/j.carbon.2009.03.033

10.1063/1.1641167

10.1016/j.compscitech.2015.04.004

10.1016/j.compscitech.2011.06.014

10.1016/j.carbon.2007.04.016

10.1016/j.carbon.2006.11.020

10.1021/acsami.5b12334

10.1016/j.carbon.2014.02.082

10.1016/j.polymer.2013.12.042

10.1016/0010-4361(94)90019-1

10.1023/A:1014970528482

10.1016/j.carbon.2013.04.050

10.1002/adma.200500615

10.1088/0957-4484/18/34/345701

10.1021/am502103u

10.1007/BF03219052

10.1063/1.4922411

10.1007/s11664-997-0276-4

10.1155/2015/320306

LiJ.QiS.ZhangM.WangZ., Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy. J. Appl. Polym. Sci. 132, 42306 (2015).

10.1016/j.matchemphys.2015.08.056

10.1039/C5TC04406E

10.1039/C5RA08118A

10.1016/j.compositesa.2010.08.006

10.1016/j.compositesa.2010.10.003

10.1016/0008-6223(96)82798-9

10.1021/acsami.5b12072

10.1016/j.carbon.2011.12.053

10.1016/j.jallcom.2016.01.123

10.1039/C5NR04670J

10.1002/adma.201400108

10.1063/1.2357565

10.1002/pat.1003

10.1021/am900893d

10.1021/acssuschemeng.5b00340

10.1016/j.solidstatesciences.2009.04.014

10.1155/2012/198973

XiaoH.Yuan-ShengW., Studies on the synthesis and microwave absorption properties of Fe3O4/polyaniline FGM. Phys. Scr. 2007, 335 (2007).

10.1016/j.synthmet.2015.09.025

10.1039/C4RA16421K

10.1016/j.apsusc.2014.05.067

10.1039/C5RA09507G

10.1039/C4RA15674A

10.1039/c3ra47387b

10.1016/j.carbon.2012.06.053

10.1016/S0014-3057(99)00157-3