Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities

Nature Communications - Tập 6 Số 1
Xunyu Lu1, Chuan Zhao1
1School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia

Tóm tắt

AbstractLarge-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm−2) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel–iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm−2 at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis.

Từ khóa


Tài liệu tham khảo

Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013) .

Cook, T. R. et al. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 110, 6474–6502 (2010) .

Carmo, M., Fritz, D. L., Merge, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energ. 38, 4901–4934 (2013) .

Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010) .

Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010) .

Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. & Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009) .

Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008) .

Tuysuz, H., Hwang, Y. J., Khan, S. B., Asiri, A. M. & Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6, 47–54 (2013) .

Blakemore, J. D., Gray, H. B., Winkler, J. R. & Muller, A. M. Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 2497–2500 (2013) .

Wang, H. L. & Dai, H. J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088–3113 (2013) .

Liang, Y. Y., Li, Y. G., Wang, H. L. & Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013–2036 (2013) .

Liang, Y. Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011) .

Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013) .

Lu, X. Y., Ng, Y. H. & Zhao, C. Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution. ChemSusChem 7, 82–86 (2014) .

Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011) .

Corrigan, D. A. & Bendert, R. M. Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films - cyclic voltammetry in 1 M KOH. J. Electrochem. Soc. 136, 723–728 (1989) .

Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987) .

Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010) .

Ji, J. Y. et al. Nanoporous Ni(OH) thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013) .

Merrill, M. D. & Dougherty, R. C. Metal oxide catalysts for the evolution of O-2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008) .

Kim, K. H., Zheng, J. Y., Shin, W. & Kang, Y. S. Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv. 2, 4759–4767 (2012) .

Gangasingh, D. & Talbot, J. B. Anomalous electrodeposition of nickel-iron. J. Electrochem. Soc. 138, 3605–3611 (1991) .

Matsushima, H. et al. Water electrolysis under microgravity - Part 1. Experimental technique. Electrochim. Acta 48, 4119–4125 (2003) .

Zeng, K. & Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 36, 307–326 (2010) .

Ahn, S. H. et al. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem. Commun. 49, 9323–9325 (2013) .

Pérez-Alonso, F. J., Adán, C., Rojas, S., Peña, M. A. & Fierro, J. L. G. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int. J. Hydrogen Energ. 39, 5204–5212 (2014) .

Chen, J., Sheng, K. X., Luo, P. H., Li, C. & Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 24, 4569–4573 (2012) .

Chang, Y. H. et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013) .

Zhao, D. D., Bao, S. J., Zhou, W. H. & Li, H. L. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869–874 (2007) .

Yuan, C. Z. et al. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni Foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012) .

Li, H. B. et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013) .

Lopez, M. C., Ortiz, G. F., Lavela, P., Alcantara, R. & Tirado, J. L. Improved energy storage solution based on hybrid oxide materials. ACS Sustain. Chem. Eng. 1, 46–56 (2013) .

Wu, Q. et al. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. J. Hazard. Mater. 199, 410–417 (2012) .

Hu, H. et al. High photocatalytic activity and stability for decomposition of gaseous acetaldehyde on TiO2/Al2O3 composite films coated on foam nickel substrates by sol-gel processes. J. Solgel Sci. Technol. 45, 1–8 (2008) .

Louie, M. W. & Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013) .

Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012) .

Ouattara, L., Fierro, S., Frey, O., Koudelka, M. & Comninellis, C. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J. Appl. Electrochem. 39, 1361–1367 (2009) .

Tsuji, E., Imanishi, A., Fukui, K. & Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011) .

Wang, J., Zhong, H. X., Qin, Y. L. & Zhang, X. B. An efficient three-dimensional oxygen evolution electrode. Angew. Chem. Int. Ed. 52, 5248–5253 (2013) .

Matsumoto, Y. & Sato, E. Electrocatalytic properties of transition-metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397–426 (1986) .

Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energ. Environ. Sci. 5, 7050–7059 (2012) .

McCrory, C. C. L., Jung, S. H., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013) .

Hall, D. E. Alkaline water electrolysis anode materials. J. Electrochem. Soc. 132, C41–C48 (1985) .

Nagai, N., Takeuchi, M., Kimura, T. & Oka, T. Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int. J. Hydrogen Energ. 28, 35–41 (2003) .

Buttry, D. A. & Ward, M. D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92, 1355–1379 (1992) .