Electrochemical aptasensor for tetracycline detection

Bioprocess and Biosystems Engineering - Tập 33 Số 1 - Trang 31-37 - 2010
Tae Young Kim1, Yeon Seok Kim1, Javed H. Niazi1, Man Bock Gu1
1School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Epe B, Woolley P, Hornig H (1987) Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli. FEBS Lett 213(2):443–447

Spahn CM, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74(8):423–439

Oka H et al (2003) Survey of residual tetracycline antibiotics and sulfa drugs in kidneys of diseased animals in the Aichi Prefecture, Japan (1995–1999). J AOAC Int 86(3):494–500

Muriuki FK et al (2001) Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. J Vet Sci 2(2):97–101

De Wasch K et al (1998) Detection of residues of tetracycline antibiotics in pork and chicken meat: correlation between results of screening and confirmatory tests. Analyst 123(12):2737–2741

Pena AL, Lino CM, Silveira IN (1999) Determination of oxytetracycline, tetracycline, and chlortetracycline in milk by liquid chromatography with postcolumn derivatization and fluorescence detection. J AOAC Int 82(1):55–60

Jeon M, Rhee Paeng I (2008) Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. Anal Chim Acta 626(2):180–185

Croubels SM, Vanoosthuyze KE, van Peteghem CH (1997) Use of metal chelate affinity chromatography and membrane-based ion-exchange as clean-up procedure for trace residue analysis of tetracyclines in animal tissues and egg. J Chromatogr B Biomed Sci Appl 690(1–2):173–179

Gwee MC (1982) Can tetracycline-induced fatty liver in pregnancy be attributed to choline deficiency? Med Hypotheses 9(2):157–162

Monser L, Darghouth F (2000) Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-epi-doxycycline in pharmaceutical products using porous graphitic carbon column. J Pharm Biomed Anal 23(2–3):353–362

Ng K, Linder SW (2003) HPLC separation of tetracycline analogues: comparison study of laser-based polarimetric detection with UV detection. J Chromatogr Sci 41(9):460–466

Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharm Biomed Anal 47(3):487–493

Han S, Liu E, Li H (2006) Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper(II) as a probe ion. Luminescence 21(2):106–111

Jalink M et al (2007) Human normal T lymphocytes and lymphoid cell lines do express alternative splicing variants of human telomerase reverse transcriptase (hTERT) mRNA. Biochem Biophys Res Commun 353(4):999–1003

Vega D et al (2007) Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Anal Bioanal Chem 389(3):951–958

Weber CC et al (2005) Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol Bioeng 89(1):9–17

Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282(1):142–146

McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319(2):244–250

Li N, Ho CM (2008) Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 130(8):2380–2381

Liss M et al (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495

Minunni M et al (2004) Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 20(6):1149–1156

Lee SJ et al (2008) ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 80(8):2867–2873

Medley CD et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 45(1):90–94

Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124(33):9678–9679

Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem 46(34):6408–6418

Kim YS, Lee SJ, Gu MB (2008) Electrochemical aptamer-based Biosensors. Biochip J 2(3):175–182

Ikebukuro K, Kiyohara C, Sode K (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 20(10):2168–2172

Centi S et al (2008) Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 23(11):1602–1609

Centi S et al (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79(4):1466–1473

Feng K et al (2008) Electrochemical immunosensor with aptamer-based enzymatic amplification. Anal Biochem 378(1):38–42

He P et al (2007) Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal Chem 79(21):8024–8029

Li B et al (2008) Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosens Bioelectron 23(7):965–970

Numnuam A et al (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712

Xiao Y et al (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem 44(34):5456–5459

Xiao Y et al (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127(51):17990–17991

Baker BR et al (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139

Baldrich E et al (2005) Displacement enzyme linked aptamer assay. Anal Chem 77(15):4774–4784

Hansen JA et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128(7):2228–2229

Wu ZS et al (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939

Feng K, Sun C, Kang Y, Chen J, Jiang J, Shen G, Yu R (2008) Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Commun 10:531–535

Niazi JH, Lee SJ, Gu MB (2008) Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 16(15):7245–7253

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

Park JW et al (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using biotin-modified DNA(ss) on a streptavidin-modified gold electrode. J Biosci Bioeng 97(1):29–32

Turku I, Sainio T, Paatero E (2007) Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett 5:225–228

Kim YS et al (2007) Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22(11):2525–2531

Kim YS, Niazi JH, Gu MB (2009) Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal Chim Acta 634(2):250–254