Electrochemical Performance of Manganese Coordinated Polyaniline

Advanced Electronic Materials - Tập 5 Số 12 - 2019
Yu‐Cheng Chen1, Yibing Xie1
1School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China

Tóm tắt

AbstractManganese (II) coordinated polyaniline (PANI‐Mn) is designed as an energy‐storage electrode to improve electrochemical cycling stability of conductive polymer‐based supercapacitors. A PANI‐Mn electrode is synthesized through electro‐polymerization and hydrothermal coordination processes. A tetrahedron coordination structure is formed between manganese (II) dichloride and neighboring imino nitrogen to enforce the bonding strength of conjoint aniline units, restraining excessive volume expansion of the PANI molecule chain. Specific capacitance is enhanced from 350 F g−1 of PANI to 810 F g−1 of PANI‐Mn at 1 A g−1. Cycling capacitance retention is improved from 61% of PANI to 88% of PANI‐Mn at 5 A g−1 for 1000 cycles. PANI‐Mn shows larger response current than PANI at the same potential. First principle calculations prove that PANIs‐Mn exhibits higher density of state at Fermi level than PANI. The conjugated electron delocalization is strengthened in transitional metal‐coordinated conductive polymer, causing the improved conductivity of PANI‐Mn. Furthermore, an all‐solid‐state symmetric supercapacitor based on a PANI‐Mn electrode exhibits an energy density of 51.38 Wh kg−1 at a power density of 850 W kg−1 and a considerable cycling life of 82% after 1000 cycles at 5 A g−1. PANI‐Mn coordination polymer exhibits enhanced electrochemical stability, thus showing promise for energy storage application.

Từ khóa


Tài liệu tham khảo

10.1039/C7TA00863E

10.1002/tcr.201980101

10.1021/acsnano.7b02796

10.1007/s10971-018-4678-y

10.1016/j.cej.2017.05.043

10.1002/cnma.201700055

10.1016/j.nanoen.2018.01.042

10.1007/s11814-018-0089-6

10.1007/s11051-018-4284-5

10.1039/C9NR03784E

10.1016/j.nanoen.2017.04.040

10.1039/C6CS00555A

10.1016/j.jpowsour.2017.02.054

10.1021/nl500255v

10.1016/j.carbon.2018.06.022

10.1016/j.electacta.2018.03.198

10.1002/er.4277

10.1016/j.jpowsour.2015.09.018

10.1021/acsami.6b16406

10.1002/slct.201601421

10.1016/j.electacta.2018.03.072

10.1021/acsami.5b08474

10.1016/j.compositesb.2018.02.007

10.1016/j.electacta.2015.01.224

10.1007/s10008-017-3831-9

10.1016/j.synthmet.2010.03.014

10.1039/c3ra40955d

10.1016/j.electacta.2018.09.037

10.1016/j.synthmet.2018.01.011

10.1016/j.ultsonch.2018.07.006

10.1007/s10853-017-1505-8

10.1002/adfm.201303282

10.1016/j.apsusc.2013.03.044

10.1016/j.electacta.2017.07.011

10.1021/ma035677w

10.1021/acs.jpcc.7b11617

10.1007/s00289-003-0137-0

10.1002/smll.201403744

10.1002/aenm.201300184

10.1021/am504756u

10.1021/acs.jpcc.8b08091

10.1039/C6CP00159A

10.1016/j.compositesb.2018.02.007

10.1016/j.jpowsour.2017.01.034

10.1016/j.carbon.2015.11.066

10.1149/1.1543948

Sivaraman P., 2010, Electrochim. Acta, 124, 351

10.1039/C6QM00196C

Chen X. P., 2015, Sci. Rep., 5

10.1039/C6TA00015K

10.1016/j.jpowsour.2016.11.068

10.1039/C6TA10757E

10.1016/j.electacta.2011.12.012

10.1021/nn301971r

10.1021/am400457x