Electrocardiographic Detection of Left Ventricular Hypertrophy; Adding Body Mass Index and Spatial QRS-T Angle: A Cross-Sectional Study

Cardiology and Therapy - Tập 8 - Trang 345-356 - 2019
Theodora W. Elffers1,2, Stella Trompet1,3, Renée de Mutsert2, Arie C. Maan1, Hildo J. Lamb4, Peter W. Macfarlane5, Frits R. Rosendaal2, J. Wouter Jukema1
1Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
2Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
3Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
4Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
5Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK

Tóm tắt

We investigated improvement of electrocardiographic LVH detection by adding measures of adiposity and/or novel electrocardiographic measures. Left ventricular hypertrophy (LVH) is an important risk factor for adverse cardiovascular outcomes. Improvement of electrocardiographic criteria for LVH is desirable, since electrocardiography is widely used. We included 1091 participants of the Netherlands Epidemiology of Obesity Study (NEO) who underwent cardiac magnetic resonance imaging (MRI). Performance of Sokolow–Lyon and Cornell voltage and product criteria was assessed. Stepwise regression analysis was performed with each conventional electrocardiographic criterion and age, sex, body mass index (BMI), waist circumference, and waist:hip ratio (p-entry < 0.05, p-removal > 0.10). T-wave abnormalities or the spatial QRS-T angle (SA) were added to the improved models. The study population had a mean (SD) age of 56 (6) years, BMI of 26.1 (4.0) kg/m2 and 46% were men. MRI-LVH was present in 10% of participants. The c-statistic for Sokolow–Lyon voltage was 0.58, R2 was 0.02 and sensitivity at 90% specificity was 16%, for Sokolow–Lyon product this was 0.62, 0.02, and 21%, for Cornell voltage 0.65, 0.04, and 28% and for Cornell product 0.67, 0.04, and 25%. Best performing models were obtained by addition of both BMI and SA (Sokolow-Lyon voltage: c-statistic 0.74, R2 0.11, sensitivity of 41% at 90% specificity; Sokolow-Lyon product: 0.75, 0.12, 42%; Cornell voltage: c-statistic 0.70, R2 0.08, sensitivity of 38% at 90% specificity; Cornell product: c-statistic 0.72, R2 0.08, sensitivity of 44% at 90% specificity). Electrocardiographic detection of LVH improved by adding BMI and SA to a model with conventional electrocardiographic criteria. This approach would require little extra effort and application in clinical practice is feasible. However, results should first be replicated in high-risk populations.

Tài liệu tham khảo

Kannel WB, Gordon T, Offutt D. Left ventricular hypertrophy by electrocardiogram. Prevalence, incidence, and mortality in the Framingham study. Ann Intern Med. 1969;71(1):89–105.

Norman JE Jr, Levy D. Adjustment of ECG left ventricular hypertrophy criteria for body mass index and age improves classification accuracy. The effects of hypertension and obesity. J Electrocardiol. 1996;29:241–7.

Blackburn H, Keys A, Simonson E, Rautaharju P, Punsar S. The electrocardiogram in population studies. A classification system. Circulation. 1960;21:1160–75.

Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.

Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2014;32(1):16–25.