Electrical characterization for ZnO layers grown on GaN templates by molecular-beam epitaxy

D. C. Oh1, Tomoya Suzuki1, J. J. Kim1, Hisao Makino1, Takashi Hanada1, M. W. Cho1, Takafumi Yao1, J. S. Song2, H. J. Ko3
1Tohoku University Institute for Materials Research, , Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
2NeosemiTech Corporate , 357-13 Dangha-dong, Seo-ku, Inchon 404-30, Korea
3Korea Photonics Technology Institute Division of Technology, , Bonchon-dong 459-3, Book-koo, Kwangjoo 500-210, Korea

Tóm tắt

We have extensively studied electrical properties for ZnO layers grown on GaN templates by molecular-beam epitaxy. First, the Schottky characteristics of Au contacts onto ZnO:N layers have been investigated by current-voltage measurements. Barrier heights and ideality factors for Au/ZnO:N Schottky contacts are systematically varied by controlling the growth temperatures and crystal-polar directions of ZnO:N layers. Second, the capacitance-voltage (C-V) characteristics of ZnO/GaN heterostructures has been investigated. Large plateau regions are observed in C-V characteristics, which are ascribed to the confined charges caused by band offset at the ZnO/GaN heterointerface. Finally, electron-trap centers in ZnO layers have been investigated by capacitance-temperature measurements. ZnO layers exhibit two electron-trap centers ET1 and ET2, whose thermal activation energies are estimated to be 33 and 0.15 eV, respectively.

Từ khóa


Tài liệu tham khảo

1982, Crystal Structures

1996, J. Electron. Mater., 25, 855, 10.1007/BF02666649

2000, J. Cryst. Growth, 214/215, 299, 10.1016/S0022-0248(00)00096-8

2000, Phys. Rev. B, 61, 15019, 10.1103/PhysRevB.61.15019

2001, Phys. Rev. B, 63, 075205, 10.1103/PhysRevB.63.075205

1980, Jpn. J. Appl. Phys., 19, 1793, 10.1143/JJAP.19.1793

Levinson, 1981, Advances in Ceramics, Grain Boundary Phenomena in Electronic Ceramics, 349

1988, J. Appl. Phys., 63, 5375, 10.1063/1.340355

1996, Jpn. J. Appl. Phys., Part 2, 35, L1158, 10.1143/JJAP.35.L1158

2002, J. Mater. Res., 17, 1529, 10.1557/JMR.2002.0227

2002, Appl. Phys. Lett., 80, 1340, 10.1063/1.1452781

2003, Appl. Phys. Lett., 82, 400, 10.1063/1.1536264

2003, Appl. Phys. Lett., 83, 1575, 10.1063/1.1604173

1998, Appl. Phys. Lett., 72, 824, 10.1063/1.120905

2000, Appl. Phys. Lett., 77, 3571, 10.1063/1.1329865

1991, Appl. Phys. Lett., 59, 2992, 10.1063/1.105821

2000, Appl. Phys. Lett., 76, 1740, 10.1063/1.126152

1999, Jpn. J. Appl. Phys., Part 2, 38, L166, 10.1143/JJAP.38.L166

2001, Appl. Phys. Lett., 90, 824

1985, IEEE Trans. Electron Devices, ED-32, 1675

1986, Appl. Phys. Lett., 48, 638, 10.1063/1.96729

1986, Appl. Phys. Lett., 48, 365, 10.1063/1.96553

1996, J. Appl. Phys., 80, 864, 10.1063/1.362895

2000, J. Appl. Phys., 87, 8070, 10.1063/1.373499

1996, Appl. Phys. Lett., 68, 2392, 10.1063/1.116144

2000, IEEE Electron Device Lett., 21, 63, 10.1109/55.821668

2002, Jpn. J. Appl. Phys., Part 1, 41, 2528, 10.1143/JJAP.41.2528

1975, J. Appl. Phys., 46, 2204, 10.1063/1.321865

1975, J. Appl. Phys., 46, 5173, 10.1063/1.322194

1980, J. Appl. Phys., 51, 6233, 10.1063/1.327608

Yan, 1983, Advances in Ceramics, 71