Electrical characteristics of a low-temperature, atmospheric-pressure helium plasma jet

AIP Advances - Tập 11 Số 1 - 2021
Hajime Sakakita1, Tetsuji Shimizu1, S. Kiyama1
1Innovative Plasma Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

Tóm tắt

In this work, we precisely measure the electrical properties of a low-temperature atmospheric-pressure helium plasma jet, such as the rf current and voltage, and analyze in detail its characteristics. The results show that the instantaneous plasma current and voltage are nearly in phase, which means that the plasma is purely resistive. The instantaneous plasma power is always active, and the average output power is the same as the plasma power. Thus, almost all the active energy flows instantaneously into the plasma. The large fraction of active energy that flows into the plasma is used for heating neutral particles in collisions. The number and polarity of the charged particles at the inner surface of the dielectric tube in the plasma electrode were estimated by integrating the plasma current. When the plasma discharge is maintained between the plasma electrode and target plate, the polarity is always negative with respect to the target plate. When the plasma is exposed to the ambient air without the target plate, the polarity is bipolar. We attribute this difference to the loss mechanism of plasma.

Từ khóa


Tài liệu tham khảo

2004, Plasma Phys. Controlled Fusion, 46, B63, 10.1088/0741-3335/46/12b/006

1994, Adv. Perform. Mater., 1, 35, 10.1007/bf00705312

2006, Spectrochim. Acta, Part B, 61, 2, 10.1016/j.sab.2005.10.003

2018, Plasma Medical Science

2006, I, 1, 145, 10.1002/tee.20031

2015, J. Coat. Technol. Res., 12, 225, 10.1007/s11998-014-9638-z

2010, Plasma Fusion Res., 5, S2117, 10.1585/pfr.5.s2117

2015, Plasma Med., 5, 189, 10.1615/plasmamed.2016015853

1963, Aust. J. Phys., 16, 430, 10.1071/ph630430

2006, J. Appl. Phys., 100, 063302, 10.1063/1.2349475

2012, Plasma Sources Sci. Technol., 21, 034017, 10.1088/0963-0252/21/3/034017

2012, Plasma Sources Sci. Technol., 21, 034001, 10.1088/0963-0252/21/3/034001

2019, Plasma Sources Sci. Technol., 28, 125009, 10.1088/1361-6595/ab4ab0

1970, J. Phys. D: Appl. Phys., 3, 1886, 10.1088/0022-3727/3/12/316

1956, Handbook of Physics, 254

1998, IEEE Trans. Plasma Sci., 26, 1685, 10.1109/27.747887

2009, J. Plasma Fusion Res. Ser., 8, 1322

2015, IEEJ Trans. Electr. Electron. Eng., 10, 614, 10.1002/tee.22127

2007, IEEJ Trans. Electr. Electron. Eng., 2, 473, 10.1002/tee.20193

2012, Phys. Procedia, 32, 723, 10.1016/j.phpro.2012.03.625

2013, J. Photopolym. Sci. Technol., 26, 555, 10.2494/photopolymer.26.555

2015, Plasma Processes Polym., 12, 1338, 10.1002/ppap.201500099

2016, Arch. Biochem. Biophys., 605, 86, 10.1016/j.abb.2016.01.012

2016, J. Phys. D: Appl. Phys., 49, 394001, 10.1088/0022-3727/49/39/394001

2015, Plasma Processes Polym., 12, 1348, 10.1002/ppap.201500132

2017, J. Clin. Biochem. Nutr., 60, 25, 10.3164/jcbn.16-60

2016, Arch. Biochem. Biophys., 605, 95, 10.1016/j.abb.2016.03.023

Toyokuni, 2018, Plasma Medical Science, 322

2004, Jpn. J. Appl. Phys., 43, 6733, 10.1143/jjap.43.6733

2018, Plasma Medical Science

2014, Rev. Sci. Instrum., 85, 0, 10.1063/1.4874317

2019, IEEE Trans. Radiat. Plasma Med. Sci., 4, 335, 10.1109/TRPMS.2019.2936667

2016, Jpn. J. Appl. Phys., 55, 010301, 10.7567/jjap.55.010301

Toyokuni, 2018, Plasma Medical Science, 54

2010, Jpn. J. Appl. Phys., 49, 066201, 10.1143/jjap.49.066201

2013, J. Phys. D: Appl. Phys., 46, 052001, 10.1088/0022-3727/46/5/052001

2014, Plasma Sources Sci. Technol., 23, 012003, 10.1088/0963-0252/23/1/012003

2014, Plasma Chem. Plasma Process., 34, 853, 10.1007/s11090-014-9537-1

2016, Jpn. J. Appl. Phys., 55, 01AB08, 10.7567/jjap.55.01ab08

2017, Plasma Sources Sci. Technol., 26, 045008, 10.1088/1361-6595/aa5b15