Electrical and optical properties of TiO2 anatase thin films

Journal of Applied Physics - Tập 75 Số 4 - Trang 2042-2047 - 1994
Hongyu Tang1, K. Prasad1, R. Sanjinés1, P. E. Schmid1, F. Lévy1
1Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Tóm tắt

Electrical and optical spectroscopic studies of TiO2 anatase thin films deposited by sputtering show that the metastable phase anatase differs in electronic properties from the well-known, stable phase rutile. Resistivity and Hall-effect measurements reveal an insulator–metal transition in a donor band in anatase thin films with high donor concentrations. Such a transition is not observed in rutile thin films with similar donor concentrations. This indicates a larger effective Bohr radius of donor electrons in anatase than in rutile, which in turn suggests a smaller electron effective mass in anatase. The smaller effective mass in anatase is consistent with the high mobility, bandlike conduction observed in anatase crystals. It is also responsible for the very shallow donor energies in anatase. Luminescence of self-trapped excitons is observed in anatase thin films, which implies a strong lattice relaxation and a small exciton bandwidth in anatase. Optical absorption and photoconductivity spectra show that anatase thin films have a wider optical absorption gap than rutile thin films.

Từ khóa


Tài liệu tham khảo

1959, Rev. Mod. Phys., 31, 646, 10.1103/RevModPhys.31.646

1971, Prog. Solid State Chem., 5, 145, 10.1016/0079-6786(71)90018-5

1985, Rep. Prog. Phys., 48, 1481, 10.1088/0034-4885/48/11/001

1991, Comments Inorg. Chem., 12, 93, 10.1080/02603599108050599

1993, J. Cryst. Growth, 130, 108, 10.1016/0022-0248(93)90842-K

1994, J. Appl. Phys., 75, 633, 10.1063/1.355801

1993, Solid State Commun., 87, 847, 10.1016/0038-1098(93)90427-O

1992, J. Vac. Sci. Technol. A, 10, 1479, 10.1116/1.578269

1978, J. Raman Spectrosc., 7, 321, 10.1002/jrs.1250070606

1967, Phys. Rev., 154, 522, 10.1103/PhysRev.154.522

1968, Rev. Mod. Phys., 40, 815, 10.1103/RevModPhys.40.815

1953, Phys. Rev., 91, 793, 10.1103/PhysRev.91.793

1980, Rep. Prog. Phys., 43, 1263, 10.1088/0034-4885/43/11/001

1960, Phys. Rev., 119, 1238, 10.1103/PhysRev.119.1238

1949, Proc. Phys. Soc. A, 62, 416, 10.1088/0370-1298/62/7/303

1961, Phil. Mag., 6, 287, 10.1080/14786436108243318

1967, Adv. Phys., 16, 49, 10.1080/00018736700101265

1956, Can. J. Phys., 34, 1356, 10.1139/p56-151

1961, J. Appl. Phys., 32, 2211, 10.1063/1.1777045

1964, Proc. R. Soc. A, 277, 237

1934, Z. Phys. Chem. B, 27, 321

1949, Phys. Rev., 76, 1215, 10.1103/PhysRev.76.1215

1991, J. Phys. Chem. Solids, 52, 1005, 10.1016/0022-3697(91)90029-Y

1993, Phys. Rev. B, 47, 11717, 10.1103/PhysRevB.47.11717

1992, Phys. Rev. B, 46, 1284, 10.1103/PhysRevB.46.1284

1978, Phys. Rev. B, 18, 5606, 10.1103/PhysRevB.18.5606

1977, Phys. Rev. B, 15, 3229, 10.1103/PhysRevB.15.3229

1992, Solid State Commun., 84, 349, 10.1016/0038-1098(92)90135-V

1976, J. Lumin., 12/13, 13, 10.1016/0022-2313(76)90061-2