Einsatzmöglichkeiten der Matching Methode zur Berücksichtigung von Selbstselektion
Tóm tắt
Häufig ist es von Interesse, den Effekt der Teilnahme an einer Massnahme auf eine Ergebnisvariable zu untersuchen. Um jedoch eine Kausalität adäquat evaluieren zu können, müssen Selbstselektionseffekte berücksichtigt werden. Hierfür wird die Matching Methode vorgeschlagen. Bei der Matching Methode besteht das Ziel darin, durch die Bildung von Paaren von Teilnehmern und Nicht-Teilnehmern den Effekt der Teilnahme an einer Massnahme auf eine Ergebnisvariable zu bewerten. Dieser Beitrag stellt unterschiedliche Varianten der Matching Methode vor und vergleicht diese. Der Beitrag zeigt damit, wie bei betriebswirtschaftlichen Problemen Selbstselektionseffekte angemessen berücksichtigt werden können.
Tài liệu tham khảo
Ashenfelter O (1978) Estimating the effect of training programs on earnings. Rev Econ Stat 60:47–57
Ashenfelter O, Rouse C (1998) Income, schooling, and ability: Evidence from a new sample of identical twins. Q J Econ: 253–284
Barabas J (2004) How deliberation affects policy opinions. Am Polit Sci Rev 98:1–16
Bjorklund A, Moffitt R (1987) The estimation of wage gains and welfare gains in self-selection models. Rev Econ Stat 69:42–49
Black DA, Smith J (2004) How robust is the evidence on the effects of college quality? Evidence from matching. J Econometrics 121:99–124
Boston Consulting Group (2001) The multichannel consumer – The need to integrate online and offline channels in Europe. Boston
Bortz J (1999) Statistik für Sozialwissenschaftler. Springer, Berlin Heidelberg New York
Bundesanstalt für Arbeit (2003) 138 Milliarden Euro für aktive Arbeitsmarktpolitik im Osten. Pressemitteilung vom 8. April 2003. http://www.soliserv.de/presse-arbeitsamt_2quartal-03.htm, abgerufen am 1. November 2004
Christensen B, Clement M, Albers S, Guldner S (2004) Zur Relevanz der Kontrollgruppenauswahl in der empirischen Forschung: Eine Analyse am Beispiel der Erfolgswirkung der Academy Awards im Filmgeschäft. Working paper, Christian-Albrechts-Universität zu Kiel
Cox D, Wermuth N (2004) Causality: A statistical view. Int Stat Rev 72:285–305
D’Agostino R (1998) Tutorial in biostatics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17:2265–2281
Degeratu A, Rangaswamy A, Wu J (2000) Consumer choice behavior in online and traditional supermarkets: The effects of brand name, price and other search attributes. Int J Res Marketing 17:55–78
Dehejia RH, Wahba S (2002) Propensity score-matching methods for nonexperimental causal studies. Rev Econ Stat 84:151–161
Edwards D (2000) Introduction to graphical modelling. Springer, Berlin Heidelberg New York
Erdem T, Keane M, Sun B (1999) Missing price and coupon availability data in scanner panels: Correcting for the self-selection bias in the choice model parameters. J Econometrics 89:177–196
Fitzenberger B, Speckesser S (2003) Weiterbildungsmassnahmen in Ostdeutschland: Ein Misserfolg der Arbeitsmarktpolitik? In: Schmähl W (Hrsg) Wechselwirkungen zwischen Arbeitsmarkt und sozialer Sicherung (Soziale Sicherung und Arbeitsmarkt, Bd. 294). Duncker und Humblot, Berlin, S. 51–81
Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438
Heckman J (1976) The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. Ann Econ Soc Meas 5:475–492
Heckman J (1978) Dummy endogenous variables in a simultaneous equations system. Econometrica 46:931–960
Heckman J (1979) Sample selection bias as a specification error. Econometrica 47:152–162
Heckman J, Ichimura H, Smith J, Todd P (1996) Sources of selection bias in evaluating social programs: An interpretation of conventional measures and evidence on the effectiveness of matching as a program evaluation method. Proc Natl Acad Sci 93:13416–13420
Heckman J, Ichimura H, Smith J, Todd P (1998) Characterizing selection bias using experimantal data. Econometrica 66:1017–1098
Heckman J, Ichimura H, Todd P (1998) Matching as an econometric evaluation estimator. Rev Econ Stud 65:261–294
Heckman J, LaLonde R, Smith J (1999) The economics and econometrics of active labor market programs. In: Ashenfelter O, Card D (Hrsg) Handbook of Labor Economics, vol. III. Amsterdam, S. 1865–2097
Heckman J, Navarro-Lozano S (2004) Using matching, instrumental variables, and control functions to estimate economic choice models. Rev Econ Stat 86:30–57
Hitt LM, Frei FX (2002) Do better customers utilize electronic distribution channels? The case of PC banking. Manag Sci 48:732–748
Hujer R, Caliendo M, Radic D (2001) Nobody knows ... how do different evaluation estimators perform in a simulated labour market experiment? Working paper, Universität Frankfurt
Hujer R, Caliendo M, Radic D (2003) Methods and limitations of evaluation and impact research. Report on VET Research in Europe, CEDEFOP Project 0730. Working paper, Universität Frankfurt
Hujer R, Maurer K-O, Wellner M (1997) The impact of training on unemployment duration in West Germany – Combining a discrete hazard rate model with matching techniques. Working paper, Universität Frankfurt
Imbens G (2004) Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Stat 86:4–29
LaLonde R (1986) Evaluating the econometric evaluations of training programs with experimental data. Am Econ Rev 76:604–620
Lauritzen S (1999) Causal inference from graphical models. Research report R-99-2021, Aalborg University. http://www.math.aau.dk/research/reports/R-99-2021.ps, abgerufen am 7. Februar 2005
Lechner M (1998) Mikroökonomische Evaluationsstudien: Anmerkungen zu Theorie und Praxis. In: Pfeiffer F, Pohlmeier W (Hrsg) Qualifikation, Weiterbildung und Arbeitsmarkterfolg. Baden-Baden, S. 13–38
Lechner M (2002) Program heterogeneity and propensity score matching: An application to the evaluation of active labor market policies. Rev Econ Stat 84:205–220
Lee L-F (2000) Self-selection. In: Baltagi B (Hrsg) A companion to theoretical econometrics. Oxford, S. 384–409
Rässler S (2002) Statistical matching. Springer, Berlin Heidelberg New York
Rosenbaum P, Rubin D (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55
Rosenbaum P, Rubin D (1985) Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 39:33–38
Roy A (1951) Some thoughts on the distribution of earnings. Oxford Econ Pap 3:135–145
Rubin D (1974) Estimating causal effects to treatments in randomised and nonrandomised studies. J Educational Psychol 66:688–701
Rubin D (1990) Comment on “Neyman (1923) and causal inference in experiments and observational studies”. Stat Sci 5:472–480
Singer B (1986) Self-selection and performance-based ratings: A case study in program evaluation. In: Wainer H (Hrsg) Drawing inference from self-selected samples. New York, S. 29–62
Smith J, Todd P (2000) Does matching overcome lalondes critique of nonexperimental estimators? Working paper, Penn Institute for Economic Research, Philadelphia
Wehrling R (2002) Retail E-banking: Tinkering pays off. ABA Banking J: 11–23
Wooldridge J (2003) Introductory econometrics – A modern approach. Mason
Zettelmeyer F, Morton FS, Silvia-Risso J (2001) Cowboys or cowards: Why are internet car prices lower? NBER working paper 8667. National Bureau of Economic Research, Berkeley