Giá trị riêng, hệ số bất biến, trọng số cao nhất và giải tích Schubert
Tóm tắt
Chúng tôi mô tả công trình gần đây của Klyachko, Totaro, Knutson và Tao liên quan đến việc xác định các giá trị riêng của tổng các ma trận Hermitian và phân rã các sản phẩm tensor của các đại diện của
Từ khóa
Tài liệu tham khảo
Agnihotri, S., 1998, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5, 817, 10.4310/MRL.1998.v5.n6.a10
Arf, Cahit, 1939, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math., 181, 1, 10.1515/crll.1940.181.1
[BDJ]BDJ J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, math.CO/9901118, J. Amer. Math. Soc. 12 (1999), 1119–1178.
[Be]Be P. Belkale, Local systems on ℙ¹∖𝕊 for 𝕊 a finite set, Ph.D. thesis, University of Chicago, 1999.
[BS]BS A. Berenstein and R. Sjamaar, Projections of coadjoint orbits and the Hilbert-Mumford criterion, to appear in J. Amer. Math. Soc., math.SG/9810125.
Berezin, F. A., 1962, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl. (2), 21, 193, 10.1090/trans2/021/07
[Bi]Bi P. Biane, Free probability for probabilists, MSRI preprint 1998-040.
[Bu]Bu A. Buch, The saturation conjecture (after A. Knutson and T. Tao), to appear in l’Enseignement Math., math.C0/9810180.
Carlson, David, 1970, Inequalities relating the degrees of elementary divors within a matrix, Simon Stevin, 44, 3
Day, Jane, 1998, The spectrum of a Hermitian matrix sum, Linear Algebra Appl., 280, 289, 10.1016/S0024-3795(98)10019-8
[DW]DW H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, to appear in J. Amer. Math. Soc.
[D]D J. Deruyts, Essai d’une théorie générale des formes algébriques, Mém. Soc. Roy. Sci. Liège 17 (1892), 1–156.
Dolgachev, Igor, 1988, Point sets in projective spaces and theta functions, Ast\'{e}risque, 210
Dooley, A. H., 1993, Sums of adjoint orbits, Linear and Multilinear Algebra, 36, 79, 10.1080/03081089308818278
Fiedler, Miroslav, 1971, Bounds for the determinant of the sum of hermitian matrices, Proc. Amer. Math. Soc., 30, 27, 10.2307/2038212
Friedland, Shmuel, 1973, Extremal eigenvalue problems for convex sets of symmetric matrices and operators, Israel J. Math., 15, 311, 10.1007/BF02787574
Fulton, William, 1997, Young tableaux, 35
[Fu3]Fu3 \bysame, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki 845, June, 1998, Astérisque 252 (1998), 255–269.
Hopkins, Charles, 1939, Rings with minimal condition for left ideals, Ann. of Math. (2), 40, 712, 10.2307/1968951
Grayson, Daniel R., 1984, Reduction theory using semistability, Comment. Math. Helv., 59, 600, 10.1007/BF02566369
Heckman, G. J., 1982, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math., 67, 333, 10.1007/BF01393821
Helmke, Uwe, 1995, Eigenvalue inequalities and Schubert calculus, Math. Nachr., 171, 207, 10.1002/mana.19951710113
Hersch, Joseph, 1962, Évaluations par défaut pour une somme quelconque de valeurs propres 𝛾_{𝑘} d’un opérateur 𝐶=𝐴+𝐵 à l’aide de valeurs propres 𝛼₁ de 𝐴 et 𝛽ⱼ de 𝐵, C. R. Acad. Sci. Paris, 254, 1559
Horn, Alfred, 1962, Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, 225, 10.2140/pjm.1962.12.225
[Joh]Joh C. R. Johnson, Precise intervals for specific eigenvalues of a product of a positive definite and a Hermitian matrix, Linear Algebra Appl. 117 (1989), 159–164.
Johnson, Charles R., 1996, The relationship between 𝐴𝐵 and 𝐵𝐴, Amer. Math. Monthly, 103, 578, 10.2307/2974670
[J]J S. Johnson, The Schubert calculus and eigenvalue inequalities for sums of Hermitian matrices, Ph.D. thesis, University of California. Santa Barbara, 1979.
Klein, T., 1968, The multiplication of Schur-functions and extensions of 𝑝-modules, J. London Math. Soc., 43, 280, 10.1112/jlms/s1-43.1.280
Kleiman, Steven L., 1974, The transversality of a general translate, Compositio Math., 28, 287
Klyachko, Alexander A., 1998, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), 4, 419, 10.1007/s000290050037
[Kl2]Kl2 \bysame, Random walks on symmetric spaces and inequalities for matrix spectra, preprint, 1999.
[Kn]Kn A. Knutson, The symplectic and algebraic geometry of Horn’s problem, math.LA/9911088.
Knutson, Allen, 1999, The honeycomb model of 𝐺𝐿_{𝑛}(𝐶) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 1055, 10.1090/S0894-0347-99-00299-4
[KTW]KTW A. Knutson, T. Tao and C. Woodward, Honeycombs II: facets of the Littlewood-Richardson cone, to appear.
Kostant, Bertram, 1961, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2), 74, 329, 10.2307/1970237
Lang, Serge, 1984, Algebra, 2
Birkhoff, Garrett, 1939, A characterization of Boolean algebras, Ann. of Math. (2), 40, 609, 10.2307/1968945
[L1]L1 B. V. Lidskii, The proper values of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 74 (1950), 769–772 (Russian).
Lidskiĭ, B. V., 1982, A polyhedron of the spectrum of the sum of two Hermitian matrices, Funktsional. Anal. i Prilozhen., 16, 76
[LR]LR D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A 233 (1934), 99–141.
Macdonald, I. G., 1995, Symmetric functions and Hall polynomials, 2, 10.1093/oso/9780198534891.001.0001
[O]O A. Okounkov, Random matrices and random permutations, math.CO/9903176.
[OS]OS L. O’Shea and R. Sjamaar, Moment maps and Riemannian symmetric pairs, to appear in Math. Ann., math.SG/9902059.
Pragacz, P., 1997, Formulas for Lagrangian and orthogonal degeneracy loci; 𝑄̃-polynomial approach, Compositio Math., 107, 11, 10.1023/A:1000182205320
Queiró, João F., 1995, Singular values and invariant factors of matrix sums and products, Linear Algebra Appl., 225, 43, 10.1016/0024-3795(93)00317-S
Riddell, R. C., 1984, Minimax problems on Grassmann manifolds. Sums of eigenvalues, Adv. in Math., 54, 107, 10.1016/0001-8708(84)90039-2
[SQS]SQS A. P. Santana, J. F. Queiró and E. Marques de Sá, Group representations and matrix spectral problems, Linear and Multilinear Algebra 46 (1999), 1–23.
Sottile, Frank, 1999, The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc., 5, 35, 10.1090/S1079-6762-99-00058-X
Tam, Tin-Yau, 1998, A unified extension of two results of Ky Fan on the sum of matrices, Proc. Amer. Math. Soc., 126, 2607, 10.1090/S0002-9939-98-04770-4
Nakano, Hidegorô, 1939, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3), 21, 357
Thompson, Robert C., 1982, An inequality for invariant factors, Proc. Amer. Math. Soc., 86, 9, 10.2307/2044384
Thompson, Robert C., 1985, Smith invariants of a product of integral matrices, 401, 10.1090/conm/047/828316
Thompson, Robert C., 1986, Invariant factors of algebraic combinations of matrices, 73
Thompson, Robert C., 1971, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl., 4, 369, 10.1007/bf01817787
Thompson, R. C., 1973, The eigenvalues and singular values of matrix sums and products. VII, Canad. Math. Bull., 16, 561, 10.4153/CMB-1973-092-x
Thompson, R. C., 1973, On a construction of B. P. Zwahlen, Linear and Multilinear Algebra, 1, 309, 10.1080/03081087408817031
Totaro, Burt, 1994, Tensor products of semistables are semistable, 242
[W]W H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441–479.
Xi, Bo Yan, 1991, A general form of the minimum-maximum theorem for eigenvalues of self-conjugate quaternion matrices, Nei Monggol Daxue Xuebao Ziran Kexue, 22, 455
[Z]Z A. Zelevinsky, Littlewood-Richardson semigroups, math.CO/9704228, New Perspectives in Algebraic Combinatorics (L. J. Billera, A. Björner, C. Greene, R. E. Simion, R. P. Stanley, eds.), Cambridge University Press (MSRI Publication), 1999, pp. 337–345.