Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động quang xúc tác hiệu quả của g-C3N4 không chứa kim loại mới dưới bức xạ mặt trời mô phỏng: Hiệu quả loại bỏ, các yếu tố ảnh hưởng và cơ chế phản ứng
Tóm tắt
Quang xúc tác dưới ánh sáng nhìn thấy cho thấy hiệu quả loại bỏ cao và chi phí thấp. Trong nghiên cứu này, nitride carbon đồ họa (g-C3N4) được chuẩn bị thông qua quá trình nhiệt phân một bước từ urê ở nhiệt độ 550 - 620 ℃ (gọi là T-g-C3N4). Trong tất cả các mẫu T-g-C3N4, 600-g-C3N4 có cấu trúc tinh thể, diện tích bề mặt lớn (85,21 m2·g−1) và hàm lượng cao các đơn vị vòng tri-s-triazine định kỳ. Năng lượng băng dẫn và năng lượng băng hóa trị của 600-g-C3N4 được ước lượng lần lượt là ‒1,11 và 1,56 eV. Rhodamine B (RhB) được chọn làm chất ô nhiễm khó phân hủy đại diện. Với tỷ lệ RhB/600-g-C3N4 là 0,1, hiệu quả loại bỏ RhB tối đa và hiệu quả khoáng hóa đạt 100% và 64%. O2•−, h+, •OH, và 1O2 là các loài oxy phản ứng. Giá trị pH thấp thuận lợi cho quang xúc tác. Hệ thống 600-g-C3N4/dưới ánh sáng nhìn thấy không bị ảnh hưởng bởi sự hiện diện của Cl−, NO3−, axit citric, và axit humic nồng độ thấp nhưng bị ảnh hưởng mạnh bởi NO2− và axit fulvic. g-C3N4 giữ được hiệu quả quang xúc tác cao trong 5 lần tái sử dụng.
Từ khóa
#quang xúc tác #nitride carbon đồ họa #hiệu quả loại bỏ #loài oxy phản ứng #ô nhiễm Rhodamine BTài liệu tham khảo
Aguer, J.-P., Richard, C., & Andreux, F. (1997). Comparison of the photoinductive properties of commercial, synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology a: Chemistry, 103(1–2), 163–168. https://doi.org/10.1016/S1010-6030(96)04515-7
Anandkumar, J., & Mandal, B. (2011). Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials, 186(2–3), 1088–1096. https://doi.org/10.1016/j.jhazmat.2010.11.104
Arbeloa, I. L., & Ojeda, P. R. (1981). Molecular forms of rhodamine B. Chemical Physics Letters, 79(2), 347–350. https://doi.org/10.1016/0009-2614(81)80219-9
Boorboor Azimi, E., Badiei, A., Hossaini Sadr, M., & Amiri, A. (2018). A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water. Advanced Powder Technology, 29(11), 2785–2791. https://doi.org/10.1016/j.apt.2018.07.027
Canonica, S., & Hoigné, J. (1995). Enhanced oxidation of methoxy phenols at micromolar concentration photosensitized by dissolved natural organic material. Chemosphere, 30(12), 2365–2374. https://doi.org/10.1016/0045-6535(95)00108-K
Chen, C., Lu, Y., Liang, J., Wang, L., & Fang, J. (2023). Roles of nitrogen dioxide radical (•NO2) in the transformation of aniline by sulfate radical and hydroxyl radical systems with the presence of nitrite. Chemical Engineering Journal, 451, 138755. https://doi.org/10.1016/j.cej.2022.138755
Dong, M. M., & Rosario-Ortiz, F. L. (2012). Photochemical formation of hydroxyl radical from effluent organic matter. Environmental Science & Technology, 46(7), 3788–3794. https://doi.org/10.1021/es2043454
Dou, M., Wang, J., Gao, B., Xu, C., & Yang, F. (2020). Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation. Chemical Engineering Journal, 383, 123134. https://doi.org/10.1016/j.cej.2019.123134
Du, H., Zhang, Y., Jiang, H., & Wang, H. (2022). Adsorption of rhodamine B on polyvinyl chloride, polystyrene, and polyethylene terephthalate microplastics in aqueous environments. Environmental Technology & Innovation, 27, 102495. https://doi.org/10.1016/j.eti.2022.102495
Du, X., Zou, G., Wang, Z., & Wang, X. (2015). A scalable chemical route to soluble acidified graphitic carbon nitride: An ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale, 7(19), 8701–8706. https://doi.org/10.1039/C5NR00665A
Fei, Y., Han, N., Zhang, M., Yang, F., Yu, X., Shi, L., Khataee, A., Zhang, W., Tao, D., & Jiang, M. (2022). Facile preparation of visible light-sensitive layered g-C3N4 for photocatalytic removal of organic pollutants. Chemosphere, 307, 135718. https://doi.org/10.1016/j.chemosphere.2022.135718
Feng, J., Gao, M., Zhang, Z., Gu, M., Wang, J., Zeng, W., & Ren, Y. (2018). Comparing the photocatalytic properties of g-C3N4 treated by thermal decomposition, solvothermal and protonation. Results in Physics, 11, 331–334. https://doi.org/10.1016/j.rinp.2018.09.014
Feng, S., & Li, F. (2021). Photocatalytic dyes degradation on suspended and cement paste immobilized TiO2/g-C3N4 under simulated solar light. Journal of Environmental Chemical Engineering, 9(4), 105488. https://doi.org/10.1016/j.jece.2021.105488
Fierro, C. M., Górka, J., Zazo, J. A., Rodriguez, J. J., Ludwinowicz, J., & Jaroniec, M. (2013). Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon, 62, 233–239. https://doi.org/10.1016/j.carbon.2013.06.012
Gayathri, P. V., Nair, D., Gopinath, G., Pilla, D., & Joseph, S. (2023). Solar photocatalysis for the decontamination of water from emerging pharmaceutical pollutant chloroquine using Nano ZnO as the catalyst. Water, Air, & Soil Pollution, 234(3), 1–16. https://doi.org/10.1007/s11270-023-06148-4
Gharbani, P., & Mehrizad, A. (2022). Preparation and characterization of graphitic carbon nitrides/polyvinylidene fluoride adsorptive membrane modified with chitosan for Rhodamine B dye removal from water: Adsorption isotherms, kinetics and thermodynamics. Carbohydrate Polymers, 277, 118860. https://doi.org/10.1016/j.carbpol.2021.118860
Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., & Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir: The ACS Journal of Surfaces and Colloids, 24(21), 12385–12391. https://doi.org/10.1021/la802015f
Ghosh, U., & Pal, A. (2022). Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. Journal of Water Process Engineering, 50, 103315. https://doi.org/10.1016/j.jwpe.2022.103315
He, F., Zhu, B., Cheng, B., Yu, J., Ho, W., & Macyk, W. (2020). 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis b: Environmental, 272, 119006. https://doi.org/10.1016/j.apcatb.2020.119006
Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., & Zhang, Y. (2017). Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. Journal of Materials Chemistry A, 5(33), 17452–17463. https://doi.org/10.1039/C7TA04639A
Huang, Y., Lin, G., Hua, Z., Chen, X., & Xu, X. (2024). Effects of thermal program on physicochemical properties and photocatalytic activity of g-C3N4 prepared by dicyandiamide pyrolysis. Diamond and Related Materials, 141, 110614. https://doi.org/10.1016/j.diamond.2023.110614
Khatun, M. M., Islam, A., Yan, C., & Nesa, M. J. (2023). Enhanced photocatalytic properties of g-C3N4/ZnO/Attapulgite (CNZATP) composite nano-mineral materials on methylene blue dye degradation. Water, Air, & Soil Pollution, 234(2), 1–12. https://doi.org/10.1007/s11270-023-06074-5
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. https://doi.org/10.1016/j.apcatb.2003.11.010
Li, J., Chen, R., Wang, J., Zhou, Y., Yang, G., & Dong, F. (2022). Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nature Communications, 13(1), 1. https://doi.org/10.1038/s41467-022-28740-8
Li, Y., Gu, M., Zhang, X., Fan, J., Lv, K., Carabineiro, S. A. C., & Dong, F. (2020). 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 41, 270–303. https://doi.org/10.1016/j.mattod.2020.09.004
Li, Y., Niu, J., Shang, E., & Crittenden, J. C. (2015). Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase. Environmental Science & Technology, 49(2), 965–973. https://doi.org/10.1021/es505089e
Li, Y., Niu, J., Shang, E., & Crittenden, J. C. (2016). Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Research, 98, 9–18. https://doi.org/10.1016/j.watres.2016.03.050
Liang, F., Zhang, Y., He, B., Yang, J., Shi, Q., & Shi, F. (2022). Enhanced photocatalytic degradation of imidacloprid and RhB by the precursor derived Bi12.7Co0.3O19.35 under different pH value. Journal of Physics and Chemistry of Solids, 164, 110638. https://doi.org/10.1016/j.jpcs.2022.110638
Liebig, J. (1834). Analyse der Harnsäure. Annalen Der Pharmacie, 10, 47–48. https://doi.org/10.1002/jlac.18340100103
Linley, S., & Thomson, N. R. (2021). Environmental applications of nanotechnology: nano-enabled remediation processes in water, soil and air treatment. Water, Air, & Soil Pollution, 232(2), 1–50. https://doi.org/10.1007/s11270-021-04985-9
Lotsch, B. V., Döblinger, M., Sehnert, J., Seyfarth, L., Senker, J., Oeckler, O., & Schnick, W. (2007). Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chemistry – A European Journal, 13(17), 4969–4980. https://doi.org/10.1002/chem.200601759
Mei, F., Dai, K., Zhang, J., Li, W., & Liang, C. (2019). Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Applied Surface Science, 488, 151–160. https://doi.org/10.1016/j.apsusc.2019.05.257
Mo, Z., She, X., Li, Y., Liu, L., Huang, L., Chen, Z., Zhang, Q., Xu, H., and Li, H. (2015). Synthesis of g-C3N4 prepared at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv, 5. https://doi.org/10.1039/C5RA19586A
Mousavi, M., Habibi-Yangjeh, A., & Abitorabi, M. (2016). Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 480, 218–231. https://doi.org/10.1016/j.jcis.2016.07.021
Niu, P., Yin, L., Yang, Y., Liu, G., & Cheng, H. (2014). Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Advanced Materials, 26(47), 8046–8052. https://doi.org/10.1002/adma.201404057
Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 116(12), 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075
Peng, K., Fu, L., Yang, H., & Ouyang, J. (2016). Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Scientific Reports, 6, 19723. https://doi.org/10.1038/srep19723
Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198. https://doi.org/10.1016/j.jhazmat.2012.01.011
Praus, P. (2021). On electronegativity of graphitic carbon nitride. Carbon, 172, 729–732. https://doi.org/10.1016/j.carbon.2020.10.074
Rajca, M., & Bodzek, M. (2013). Kinetics of fulvic and humic acids photodegradation in water solutions. Separation and Purification Technology, 120, 35–42. https://doi.org/10.1016/j.seppur.2013.09.019
Shi, Z., Zhang, Y., Shen, X., Duoerkun, G., Zhu, B., Zhang, L., Li, M., & Chen, Z. (2020). Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chemical Engineering Journal, 386, 124010. https://doi.org/10.1016/j.cej.2020.124010
Song, Y., Tian, J., Gao, S., Shao, P., Qi, J., & Cui, F. (2017). Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways. Applied Catalysis B: Environmental, 210, 88–96. https://doi.org/10.1016/j.apcatb.2017.03.059
Tang, R., Gong, D., Deng, Y., Xiong, S., Deng, J., Li, L., Zhou, Z., Zheng, J., Su, L., & Yang, L. (2022). π-π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chemical Engineering Journal, 427, 131809. https://doi.org/10.1016/j.cej.2021.131809
Vigneshwaran, S., Preethi, J., & Meenakshi, S. (2019). Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: Photocatalytic and adsorption studies. International Journal of Biological Macromolecules, 132, 289–299. https://doi.org/10.1016/j.ijbiomac.2019.03.071
Wang, J., Li, H., & Yue, D. (2022a). Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride. Journal of Hazardous Materials, 424, 127643. https://doi.org/10.1016/j.jhazmat.2021.127643
Wang, J., Wang, G., Cheng, B., Yu, J., & Fan, J. (2021a). Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 42(1), 56–68. https://doi.org/10.1016/S1872-2067(20)63634-8
Wang, L., Lan, X., Peng, W., & Wang, Z. (2021b). Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. Journal of Hazardous Materials, 408, 124436. https://doi.org/10.1016/j.jhazmat.2020.124436
Wang, L., Yang, T., Peng, L., Zhang, Q., She, X., Tang, H., & Liu, Q. (2022b). Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Catalysis, 43(10), 2720–2731. https://doi.org/10.1016/S1872-2067(22)64133-0
Wang, M., Gao, B., & Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318, 233–246. https://doi.org/10.1016/j.jhazmat.2016.06.065
Wang, Q., Luo, C., Lai, Z., Chen, S., He, D., & Mu, J. (2022c). Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism. Bioresource Technology, 357, 127363. https://doi.org/10.1016/j.biortech.2022.127363
Wang, R., Zhai, H., Luo, W., Liu, W., Zhuang, Z., & Ji, M. (2022d). Multifunctional sites on reduced graphene oxide synergistically improving the degradation of diclofenac in peroxydisulfate systems. Journal of Environmental Chemical Engineering, 10(5), 108251. https://doi.org/10.1016/j.jece.2022.108251
Wang, W., & Ku, Y. (2007). Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1), 261–268. https://doi.org/10.1016/j.colsurfa.2007.02.037
Wang, W., Xu, P., Chen, M., Zeng, G., Zhang, C., Zhou, C., Yang, Y., Huang, D., Lai, C., Cheng, M., Hu, L., Xiong, W., Guo, H., & Zhou, M. (2018). Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustainable Chemistry & Engineering, 6(11), 15503–15516. https://doi.org/10.1021/acssuschemeng.8b03965
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. https://doi.org/10.1038/nmat2317
Wu, J., Xie, Y., Ling, Y., Dong, Y., Li, J., Li, S., & Zhao, J. (2019). Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol a under visible light irradiation. Frontiers in Chemistry, 7, 649. https://doi.org/10.3389/fchem.2019.00649
Xia, P., Zhu, B., Cheng, B., Yu, J., & Xu, J. (2018). 2D/2D g-C3N4/MnO2 nanocomposite as a direct z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chemistry & Engineering, 6(1), 965–973. https://doi.org/10.1021/acssuschemeng.7b03289
Xu, J., Long, K., Wang, Y., Xue, B., & Li, Y. (2015). Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Applied Catalysis a: General, 496, 1–8. https://doi.org/10.1016/j.apcata.2015.02.025
Xu, J., Wang, Y., & Zhu, Y. (2013). Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir, 29(33), 10566–10572. https://doi.org/10.1021/la402268u
Yang, C., Chai, H., Xu, P., Wang, P., Wang, X., Shen, T., Zheng, Q., & Zhang, G. (2022). One-step synthesis of a 3D/2D Bi2WO6/g-C3N4 heterojunction for effective photocatalytic degradation of atrazine: Kinetics, degradation mechanisms and ecotoxicity. Separation and Purification Technology, 288, 120609. https://doi.org/10.1016/j.seppur.2022.120609
Yang, X., Qian, F., Zou, G., Li, M., Lu, J., Li, Y., & Bao, M. (2016). Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Applied Catalysis B: Environmental, 193, 22–35. https://doi.org/10.1016/j.apcatb.2016.03.060
Yang, Y., Jiang, J., Lu, X., Ma, J., & Liu, Y. (2015). Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environmental Science & Technology, 49(12), 7330–7339. https://doi.org/10.1021/es506362e
Yuan, X., Qin, W., Lei, X., Sun, L., Li, Q., Li, D., Xu, H., & Xia, D. (2018). Efficient enhancement of ozonation performance via ZVZ immobilized g-C3N4 towards superior oxidation of micropollutants. Chemosphere, 205, 369–379. https://doi.org/10.1016/j.chemosphere.2018.04.121
Zhang, B., Hu, X., Liu, E., & Fan, J. (2021). Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chinese Journal of Catalysis, 42(9), 1519–1529. https://doi.org/10.1016/S1872-2067(20)63765-2
Zhang, X., Yuan, X., Jiang, L., Zhang, J., Yu, H., Wang, H., & Zeng, G. (2020). Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chemical Engineering Journal, 390, 124475. https://doi.org/10.1016/j.cej.2020.124475
Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H., & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Applied Catalysis B: Environmental, 152–153, 46–50. https://doi.org/10.1016/j.apcatb.2014.01.023
Zhong, J., Jiang, H., Wang, Z., Yu, Z., Wang, L., Mueller, J. F., & Guo, J. (2021). Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 5, 100079. https://doi.org/10.1016/j.ese.2021.100079
Zhu, B., Xia, P., Ho, W., & Yu, J. (2015). Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 344, 188–195. https://doi.org/10.1016/j.apsusc.2015.03.086
Zuo, L., Li, H., Lin, L., Sun, Y., Diao, Z., Liu, S., Zhang, Z.-Y., & Xu, X.-R. (2019). Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere, 215, 25–32. https://doi.org/10.1016/j.chemosphere.2018.09.173