Hoạt động quang xúc tác hiệu quả của g-C3N4 không chứa kim loại mới dưới bức xạ mặt trời mô phỏng: Hiệu quả loại bỏ, các yếu tố ảnh hưởng và cơ chế phản ứng

Water, Air, and Soil Pollution - Tập 235 - Trang 1-18 - 2024
Wenjing Luo1, Rumeng Wang1, Jun Zhao2, Hongyan Zhai1
1School of Environmental Science and Engineering, Tianjin University, Tianjin, China
2Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin, China

Tóm tắt

Quang xúc tác dưới ánh sáng nhìn thấy cho thấy hiệu quả loại bỏ cao và chi phí thấp. Trong nghiên cứu này, nitride carbon đồ họa (g-C3N4) được chuẩn bị thông qua quá trình nhiệt phân một bước từ urê ở nhiệt độ 550 - 620 ℃ (gọi là T-g-C3N4). Trong tất cả các mẫu T-g-C3N4, 600-g-C3N4 có cấu trúc tinh thể, diện tích bề mặt lớn (85,21 m2·g−1) và hàm lượng cao các đơn vị vòng tri-s-triazine định kỳ. Năng lượng băng dẫn và năng lượng băng hóa trị của 600-g-C3N4 được ước lượng lần lượt là ‒1,11 và 1,56 eV. Rhodamine B (RhB) được chọn làm chất ô nhiễm khó phân hủy đại diện. Với tỷ lệ RhB/600-g-C3N4 là 0,1, hiệu quả loại bỏ RhB tối đa và hiệu quả khoáng hóa đạt 100% và 64%. O2•−, h+, •OH, và 1O2 là các loài oxy phản ứng. Giá trị pH thấp thuận lợi cho quang xúc tác. Hệ thống 600-g-C3N4/dưới ánh sáng nhìn thấy không bị ảnh hưởng bởi sự hiện diện của Cl−, NO3−, axit citric, và axit humic nồng độ thấp nhưng bị ảnh hưởng mạnh bởi NO2− và axit fulvic. g-C3N4 giữ được hiệu quả quang xúc tác cao trong 5 lần tái sử dụng.

Từ khóa

#quang xúc tác #nitride carbon đồ họa #hiệu quả loại bỏ #loài oxy phản ứng #ô nhiễm Rhodamine B

Tài liệu tham khảo

Aguer, J.-P., Richard, C., & Andreux, F. (1997). Comparison of the photoinductive properties of commercial, synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology a: Chemistry, 103(1–2), 163–168. https://doi.org/10.1016/S1010-6030(96)04515-7 Anandkumar, J., & Mandal, B. (2011). Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials, 186(2–3), 1088–1096. https://doi.org/10.1016/j.jhazmat.2010.11.104 Arbeloa, I. L., & Ojeda, P. R. (1981). Molecular forms of rhodamine B. Chemical Physics Letters, 79(2), 347–350. https://doi.org/10.1016/0009-2614(81)80219-9 Boorboor Azimi, E., Badiei, A., Hossaini Sadr, M., & Amiri, A. (2018). A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water. Advanced Powder Technology, 29(11), 2785–2791. https://doi.org/10.1016/j.apt.2018.07.027 Canonica, S., & Hoigné, J. (1995). Enhanced oxidation of methoxy phenols at micromolar concentration photosensitized by dissolved natural organic material. Chemosphere, 30(12), 2365–2374. https://doi.org/10.1016/0045-6535(95)00108-K Chen, C., Lu, Y., Liang, J., Wang, L., & Fang, J. (2023). Roles of nitrogen dioxide radical (•NO2) in the transformation of aniline by sulfate radical and hydroxyl radical systems with the presence of nitrite. Chemical Engineering Journal, 451, 138755. https://doi.org/10.1016/j.cej.2022.138755 Dong, M. M., & Rosario-Ortiz, F. L. (2012). Photochemical formation of hydroxyl radical from effluent organic matter. Environmental Science & Technology, 46(7), 3788–3794. https://doi.org/10.1021/es2043454 Dou, M., Wang, J., Gao, B., Xu, C., & Yang, F. (2020). Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation. Chemical Engineering Journal, 383, 123134. https://doi.org/10.1016/j.cej.2019.123134 Du, H., Zhang, Y., Jiang, H., & Wang, H. (2022). Adsorption of rhodamine B on polyvinyl chloride, polystyrene, and polyethylene terephthalate microplastics in aqueous environments. Environmental Technology & Innovation, 27, 102495. https://doi.org/10.1016/j.eti.2022.102495 Du, X., Zou, G., Wang, Z., & Wang, X. (2015). A scalable chemical route to soluble acidified graphitic carbon nitride: An ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale, 7(19), 8701–8706. https://doi.org/10.1039/C5NR00665A Fei, Y., Han, N., Zhang, M., Yang, F., Yu, X., Shi, L., Khataee, A., Zhang, W., Tao, D., & Jiang, M. (2022). Facile preparation of visible light-sensitive layered g-C3N4 for photocatalytic removal of organic pollutants. Chemosphere, 307, 135718. https://doi.org/10.1016/j.chemosphere.2022.135718 Feng, J., Gao, M., Zhang, Z., Gu, M., Wang, J., Zeng, W., & Ren, Y. (2018). Comparing the photocatalytic properties of g-C3N4 treated by thermal decomposition, solvothermal and protonation. Results in Physics, 11, 331–334. https://doi.org/10.1016/j.rinp.2018.09.014 Feng, S., & Li, F. (2021). Photocatalytic dyes degradation on suspended and cement paste immobilized TiO2/g-C3N4 under simulated solar light. Journal of Environmental Chemical Engineering, 9(4), 105488. https://doi.org/10.1016/j.jece.2021.105488 Fierro, C. M., Górka, J., Zazo, J. A., Rodriguez, J. J., Ludwinowicz, J., & Jaroniec, M. (2013). Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon, 62, 233–239. https://doi.org/10.1016/j.carbon.2013.06.012 Gayathri, P. V., Nair, D., Gopinath, G., Pilla, D., & Joseph, S. (2023). Solar photocatalysis for the decontamination of water from emerging pharmaceutical pollutant chloroquine using Nano ZnO as the catalyst. Water, Air, & Soil Pollution, 234(3), 1–16. https://doi.org/10.1007/s11270-023-06148-4 Gharbani, P., & Mehrizad, A. (2022). Preparation and characterization of graphitic carbon nitrides/polyvinylidene fluoride adsorptive membrane modified with chitosan for Rhodamine B dye removal from water: Adsorption isotherms, kinetics and thermodynamics. Carbohydrate Polymers, 277, 118860. https://doi.org/10.1016/j.carbpol.2021.118860 Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., & Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir: The ACS Journal of Surfaces and Colloids, 24(21), 12385–12391. https://doi.org/10.1021/la802015f Ghosh, U., & Pal, A. (2022). Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. Journal of Water Process Engineering, 50, 103315. https://doi.org/10.1016/j.jwpe.2022.103315 He, F., Zhu, B., Cheng, B., Yu, J., Ho, W., & Macyk, W. (2020). 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis b: Environmental, 272, 119006. https://doi.org/10.1016/j.apcatb.2020.119006 Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., & Zhang, Y. (2017). Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. Journal of Materials Chemistry A, 5(33), 17452–17463. https://doi.org/10.1039/C7TA04639A Huang, Y., Lin, G., Hua, Z., Chen, X., & Xu, X. (2024). Effects of thermal program on physicochemical properties and photocatalytic activity of g-C3N4 prepared by dicyandiamide pyrolysis. Diamond and Related Materials, 141, 110614. https://doi.org/10.1016/j.diamond.2023.110614 Khatun, M. M., Islam, A., Yan, C., & Nesa, M. J. (2023). Enhanced photocatalytic properties of g-C3N4/ZnO/Attapulgite (CNZATP) composite nano-mineral materials on methylene blue dye degradation. Water, Air, & Soil Pollution, 234(2), 1–12. https://doi.org/10.1007/s11270-023-06074-5 Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. https://doi.org/10.1016/j.apcatb.2003.11.010 Li, J., Chen, R., Wang, J., Zhou, Y., Yang, G., & Dong, F. (2022). Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nature Communications, 13(1), 1. https://doi.org/10.1038/s41467-022-28740-8 Li, Y., Gu, M., Zhang, X., Fan, J., Lv, K., Carabineiro, S. A. C., & Dong, F. (2020). 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 41, 270–303. https://doi.org/10.1016/j.mattod.2020.09.004 Li, Y., Niu, J., Shang, E., & Crittenden, J. C. (2015). Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase. Environmental Science & Technology, 49(2), 965–973. https://doi.org/10.1021/es505089e Li, Y., Niu, J., Shang, E., & Crittenden, J. C. (2016). Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Research, 98, 9–18. https://doi.org/10.1016/j.watres.2016.03.050 Liang, F., Zhang, Y., He, B., Yang, J., Shi, Q., & Shi, F. (2022). Enhanced photocatalytic degradation of imidacloprid and RhB by the precursor derived Bi12.7Co0.3O19.35 under different pH value. Journal of Physics and Chemistry of Solids, 164, 110638. https://doi.org/10.1016/j.jpcs.2022.110638 Liebig, J. (1834). Analyse der Harnsäure. Annalen Der Pharmacie, 10, 47–48. https://doi.org/10.1002/jlac.18340100103 Linley, S., & Thomson, N. R. (2021). Environmental applications of nanotechnology: nano-enabled remediation processes in water, soil and air treatment. Water, Air, & Soil Pollution, 232(2), 1–50. https://doi.org/10.1007/s11270-021-04985-9 Lotsch, B. V., Döblinger, M., Sehnert, J., Seyfarth, L., Senker, J., Oeckler, O., & Schnick, W. (2007). Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chemistry – A European Journal, 13(17), 4969–4980. https://doi.org/10.1002/chem.200601759 Mei, F., Dai, K., Zhang, J., Li, W., & Liang, C. (2019). Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Applied Surface Science, 488, 151–160. https://doi.org/10.1016/j.apsusc.2019.05.257 Mo, Z., She, X., Li, Y., Liu, L., Huang, L., Chen, Z., Zhang, Q., Xu, H., and Li, H. (2015). Synthesis of g-C3N4 prepared at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv, 5. https://doi.org/10.1039/C5RA19586A Mousavi, M., Habibi-Yangjeh, A., & Abitorabi, M. (2016). Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 480, 218–231. https://doi.org/10.1016/j.jcis.2016.07.021 Niu, P., Yin, L., Yang, Y., Liu, G., & Cheng, H. (2014). Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Advanced Materials, 26(47), 8046–8052. https://doi.org/10.1002/adma.201404057 Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 116(12), 7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075 Peng, K., Fu, L., Yang, H., & Ouyang, J. (2016). Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Scientific Reports, 6, 19723. https://doi.org/10.1038/srep19723 Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198. https://doi.org/10.1016/j.jhazmat.2012.01.011 Praus, P. (2021). On electronegativity of graphitic carbon nitride. Carbon, 172, 729–732. https://doi.org/10.1016/j.carbon.2020.10.074 Rajca, M., & Bodzek, M. (2013). Kinetics of fulvic and humic acids photodegradation in water solutions. Separation and Purification Technology, 120, 35–42. https://doi.org/10.1016/j.seppur.2013.09.019 Shi, Z., Zhang, Y., Shen, X., Duoerkun, G., Zhu, B., Zhang, L., Li, M., & Chen, Z. (2020). Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chemical Engineering Journal, 386, 124010. https://doi.org/10.1016/j.cej.2020.124010 Song, Y., Tian, J., Gao, S., Shao, P., Qi, J., & Cui, F. (2017). Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways. Applied Catalysis B: Environmental, 210, 88–96. https://doi.org/10.1016/j.apcatb.2017.03.059 Tang, R., Gong, D., Deng, Y., Xiong, S., Deng, J., Li, L., Zhou, Z., Zheng, J., Su, L., & Yang, L. (2022). π-π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chemical Engineering Journal, 427, 131809. https://doi.org/10.1016/j.cej.2021.131809 Vigneshwaran, S., Preethi, J., & Meenakshi, S. (2019). Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: Photocatalytic and adsorption studies. International Journal of Biological Macromolecules, 132, 289–299. https://doi.org/10.1016/j.ijbiomac.2019.03.071 Wang, J., Li, H., & Yue, D. (2022a). Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride. Journal of Hazardous Materials, 424, 127643. https://doi.org/10.1016/j.jhazmat.2021.127643 Wang, J., Wang, G., Cheng, B., Yu, J., & Fan, J. (2021a). Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 42(1), 56–68. https://doi.org/10.1016/S1872-2067(20)63634-8 Wang, L., Lan, X., Peng, W., & Wang, Z. (2021b). Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. Journal of Hazardous Materials, 408, 124436. https://doi.org/10.1016/j.jhazmat.2020.124436 Wang, L., Yang, T., Peng, L., Zhang, Q., She, X., Tang, H., & Liu, Q. (2022b). Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Catalysis, 43(10), 2720–2731. https://doi.org/10.1016/S1872-2067(22)64133-0 Wang, M., Gao, B., & Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318, 233–246. https://doi.org/10.1016/j.jhazmat.2016.06.065 Wang, Q., Luo, C., Lai, Z., Chen, S., He, D., & Mu, J. (2022c). Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism. Bioresource Technology, 357, 127363. https://doi.org/10.1016/j.biortech.2022.127363 Wang, R., Zhai, H., Luo, W., Liu, W., Zhuang, Z., & Ji, M. (2022d). Multifunctional sites on reduced graphene oxide synergistically improving the degradation of diclofenac in peroxydisulfate systems. Journal of Environmental Chemical Engineering, 10(5), 108251. https://doi.org/10.1016/j.jece.2022.108251 Wang, W., & Ku, Y. (2007). Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1), 261–268. https://doi.org/10.1016/j.colsurfa.2007.02.037 Wang, W., Xu, P., Chen, M., Zeng, G., Zhang, C., Zhou, C., Yang, Y., Huang, D., Lai, C., Cheng, M., Hu, L., Xiong, W., Guo, H., & Zhou, M. (2018). Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustainable Chemistry & Engineering, 6(11), 15503–15516. https://doi.org/10.1021/acssuschemeng.8b03965 Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76–80. https://doi.org/10.1038/nmat2317 Wu, J., Xie, Y., Ling, Y., Dong, Y., Li, J., Li, S., & Zhao, J. (2019). Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol a under visible light irradiation. Frontiers in Chemistry, 7, 649. https://doi.org/10.3389/fchem.2019.00649 Xia, P., Zhu, B., Cheng, B., Yu, J., & Xu, J. (2018). 2D/2D g-C3N4/MnO2 nanocomposite as a direct z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chemistry & Engineering, 6(1), 965–973. https://doi.org/10.1021/acssuschemeng.7b03289 Xu, J., Long, K., Wang, Y., Xue, B., & Li, Y. (2015). Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Applied Catalysis a: General, 496, 1–8. https://doi.org/10.1016/j.apcata.2015.02.025 Xu, J., Wang, Y., & Zhu, Y. (2013). Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir, 29(33), 10566–10572. https://doi.org/10.1021/la402268u Yang, C., Chai, H., Xu, P., Wang, P., Wang, X., Shen, T., Zheng, Q., & Zhang, G. (2022). One-step synthesis of a 3D/2D Bi2WO6/g-C3N4 heterojunction for effective photocatalytic degradation of atrazine: Kinetics, degradation mechanisms and ecotoxicity. Separation and Purification Technology, 288, 120609. https://doi.org/10.1016/j.seppur.2022.120609 Yang, X., Qian, F., Zou, G., Li, M., Lu, J., Li, Y., & Bao, M. (2016). Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Applied Catalysis B: Environmental, 193, 22–35. https://doi.org/10.1016/j.apcatb.2016.03.060 Yang, Y., Jiang, J., Lu, X., Ma, J., & Liu, Y. (2015). Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environmental Science & Technology, 49(12), 7330–7339. https://doi.org/10.1021/es506362e Yuan, X., Qin, W., Lei, X., Sun, L., Li, Q., Li, D., Xu, H., & Xia, D. (2018). Efficient enhancement of ozonation performance via ZVZ immobilized g-C3N4 towards superior oxidation of micropollutants. Chemosphere, 205, 369–379. https://doi.org/10.1016/j.chemosphere.2018.04.121 Zhang, B., Hu, X., Liu, E., & Fan, J. (2021). Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chinese Journal of Catalysis, 42(9), 1519–1529. https://doi.org/10.1016/S1872-2067(20)63765-2 Zhang, X., Yuan, X., Jiang, L., Zhang, J., Yu, H., Wang, H., & Zeng, G. (2020). Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chemical Engineering Journal, 390, 124475. https://doi.org/10.1016/j.cej.2020.124475 Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H., & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Applied Catalysis B: Environmental, 152–153, 46–50. https://doi.org/10.1016/j.apcatb.2014.01.023 Zhong, J., Jiang, H., Wang, Z., Yu, Z., Wang, L., Mueller, J. F., & Guo, J. (2021). Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 5, 100079. https://doi.org/10.1016/j.ese.2021.100079 Zhu, B., Xia, P., Ho, W., & Yu, J. (2015). Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 344, 188–195. https://doi.org/10.1016/j.apsusc.2015.03.086 Zuo, L., Li, H., Lin, L., Sun, Y., Diao, Z., Liu, S., Zhang, Z.-Y., & Xu, X.-R. (2019). Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere, 215, 25–32. https://doi.org/10.1016/j.chemosphere.2018.09.173