Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device

Reproductive Biology and Endocrinology - Tập 15 - Trang 1-9 - 2017
Kenji Momozawa1, Atsushi Matsuzawa2, Yukio Tokunaga2, Shiori Abe3, Yumi Koyanagi3, Miho Kurita3, Marina Nakano3, Takao Miyake3
1School of Veterinary Medicine, Kitasato University, Aomori, Japan
2Kyoto R&D Laboratory, Mitsubishi Paper Mills Limited, Kyoto, Japan
3Miyake Women’s Clinic, Chiba, Japan

Tóm tắt

Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.

Tài liệu tham khảo

Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod. 1996;54:1059–69. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51:53–8. Lane M, Schoolcraft WB, Gardner DK. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril. 1999;72:1073–8. Papis K, Shimizu M, Izaike Y. Factors affecting the survivability of bovine oocytes vitrified in droplets. Theriogenology. 2000;54:651–8. Kuwayama M, Kato O. All-round vitrification method for human oocytes and embryos. J Assist Reprod Genet. 2000;17:47 (abstract). Tominaga K, Hamada Y. Gel-loading tip as container for vitrification of in vitro-produced bovine embryos. J Reprod Dev. 2001;47:267–73. Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev. 2001;58:342–7. Matsunari H, Maehara M, Nakano K, Ikezawa Y, Hagiwara Y, Sasayama N, Shirasu A, Ohta H, Takahashi M, Nagashima H. Hollow fiber vitrification: a novel method for vitrifying multiple embryos in a single device. J Reprod Dev. 2012;58:599–608. Momozawa K, Fukuda Y. Vitrification of bovine blastocysts on a membrane filter absorbing extracellular vitrification solution. J Mamm Ova Res. 2006;23:63–6. Seki S, Mazur P. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod. 2008;79:727–37. Seki S, Mazur P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology. 2009;59:75–82. Toyoda Y, Yokoyama M, Hoshi T. Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod. 1971;16:147–51 (in Japanese). Ho Y, Wiggresworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41:232–8. Tarakanov YA, Johansson BOJ, Lehman HJ, Apell SP. Numerical simulations demonstrate safe vitrification and warming of embryos using the Rapid-iTM device. In Proceedings of the COMSOL Conference; Milan, Italy. 2009. Momozawa K, Sano H, Fukuda Y. Effects of stepwise pre-vitrification treatment and preincubation before insemination on in-vitro fertilization of vitrified porcine oocytes after extrusion of their lipid droplets and delipation. Tohoku Anim Sci Technol. 2008;58:6–12 (In Japanese). Momozawa K, Iwasaki H, Onoda Y, Hagiwara R, Mori M, Fukuda Y. In vitro development of porcine in vitro matured oocytes vitrified after removal of cytoplasmic lipid droplets. J Mamm Ova Res. 2013;30:36–40. Ling XF, Zhang JQ, Cao SR, Chen J, Peng Y, Guo X, Heng BC, Tong GQ, Wang X. Effect of cryotopvitrification on preimplantation developmental competence of murine morula and blastocyst stage embryos. Reprod Biomed Online. 2009;19:708–13. Dhali A, Anchamparuthy VM, Bulter SP, Pearson RE, Mullarky IK, Gwazdauskas FC. Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology. 2009;71:1408–16. Zhang JQ, Cui J, Ling XF, Li X, Peng Y, Guo X, Hen BC, Tong GQ. Vitrification of mouse embryos at 2-cell, 4-cell and 8-cell stages by cryotop method. J Assist Reprod Genet. 2009;26:621–8. An L, Chang S, Hu Y, Li Y, Xu B, Zhang F, Yang L, Presicce GA, Du F. Efficient cryopreservation of mouse embryos by modified droplet vitrification (MDV). Cryobiology. 2015;71:70–6. Mazur P, Seki S. Survival of mouse oocytes after being cooled in a vitrification solution to −196 °C at 95° to 70,000 °C/min and warmed at 610° to 118,000 °C/min: A new paradigm for cryopreservation by vitrification. Cryobiology. 2011;62:1–7. Kleinhans FW, Seki S, Mazur P. Simple, inexpensive attainment and measurement of very high cooling and warming rates. Cryobiology. 2010;61:231–3. Desai NN, Goldberg JM, Austin C, Falcone T. The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage. Reprod Biol Endocrinol. 2013;11:41.