Efficient removal of safranin from aqueous solution using a new type of metalated highly self-doped polyaniline nanocomposite

Hammed H. A. M. Hassan1, Marwa Abdel Fattah2
1Chemistry Department, Faculty of Science, Alexandria University, P.O. 2, Moharram Beck, Alexandria, Egypt
2Menoufia Higher Institute of Engineering and Technology MNF-HIET, Menoufia, Egypt

Tóm tắt

AbstractWe report the chemical synthesis of poly(aniline-co-aniline-2,5-disulfonic acid)) and its composite containing L-hexuronic acid and metallic Ag/SiO2 nanoparticles as a new thermally stable anionic polyelectrolyte for removing safranin dye. The composite was characterized by IR, UV, cyclic voltammetry, SEM, TEM, TGA, DSC, EDXS and elemental analyses. Microscopic images exhibited intensified spherical particles dispersed over almost the entire surface. The XRD exhibited peaks of the partially crystalline material at many 2θ values, and their interatomic spacing and sizes were calculated. The cyclic voltammograms exhibited characteristic redox peaks relative to the quinoid ring transition states. The uptake rates up to 82.5% adsorption were completed within 75 min and the equilibrium time was 45 min. The isotherm of dye adsorption interprets the interaction with the adsorbent and explain the relationship between the dye removal capacity and the initial dye concentration. In the current, the Langmuir isotherm model was the optimum to interpret both the dye/copolymer and the dye/composite interactions. The uptake of safranin by copolymer/SiO2@Ag nanocomposite was well defined by pseudo second order model with rate constant K2 = 0.03 g− 1 mg− 1 min− 1 for 19 mg safranin. A comparison of safranin adsorption efficiency of the synthesized material with other reported material in the same domain suggested that the present composite has a higher adsorption rate and capacity. The ongoing research is devoted to improving the removal percentage of the dye by using 1,3,5-triazine based sulfonated polyaniline/Ag@ SiO2 nanocomposite.

Từ khóa


Tài liệu tham khảo

D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019). https://doi.org/10.1007/s13762-018-2130-z

M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interf. Sci. 209, 172–184 (2014). https://doi.org/10.1016/j.cis.2014.04.002

G. Ciric-Marjanovi’c, N.V. Blinova, M. Trchova, J. Stejskal, Chemical oxidative polymerization of safranines. J. Phys. Chem. B 111, 2188–2199 (2007). https://doi.org/10.1021/jp067407w

F. Mohamed, M.R. Abukhadra, M. Shaban, Removal of safranin dye from water using polypyrrole nanofber/Zn-Fe layered double hydroxide nanocomposite (PPyNF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci. Total Environ. 640–1, 352–363 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.316

M.R. Abukhadra, M. Shaban, F. Sayed, I. Saad, Efficient photocatalytic removal of safranin-O dye pollutants from water under sunlight using synthetic bentonite/polyaniline@Ni2O3 photocatalyst of enhanced properties. Environ. Sci. Pollut. Res. 25, 33264–33276 (2018). https://doi.org/10.1007/s11356-018-3270-x

M.R. Abukhadra, M. Shaban, M.A. Abd El Samad, Enhanced photocatalytic removal of Safranin-T dye under sunlight within minute time intervals using heulandite/polyaniline@nickel oxide composites a novel photocatalyst. Ecotoxicol. Environ. Saf. 162, 261–271 (2018). https://doi.org/10.1016/j.ecoenv.2018.06.081

D. Karadag, E. Akgul, S. Tok, F. Erturk, M.A. Kaya, M. Turan, Basic and reactive dye removal using natural and modified zeolites. Chem. Eng. Data 52-6, 2436–2441 (2007). https://doi.org/10.1021/je7003726

M. Anjum, R. Miandad, M. Waqas, F. Waqas, M.A. Barakat, Remediation of wastewater using various nanomaterial. Arab. J. Chem. 12, 4897–4919 (2019). https://doi.org/10.1016/j.arabjc.2016.10.004

C. Fleischmann, M. Lievenbrück, H. Ritter, Polymers and dyes: Developments and applications. Polymers 7, 717–746 (2015). https://doi.org/10.3390/polym7040717

E.N. Zarea, A. Motaharib, M. Sillanpää, Nano-adsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 162, 173–195 (2018). https://doi.org/10.1016/j.envres.2017.12.025

V. Babel, B.L. Hiran, A review on polyaniline composites: Synthesis, characterization, and applications. Polym. Compos. 42, 3142–3157 (2021). https://doi.org/10.1002/pc.26048

S. Agarwal, I. Tyagi, V.K. Gupta, F. Golbaz, A.N. Golikand, O. Moradi, Synthesis and characteristics of polyaniline/zirconium oxide conductive nanocomposite for dye adsorption application. J. Mol. Liq. 218, 494–498 (2016). https://doi.org/10.1016/j.molliq.2016.02.040

M. Rastgordani, J. Zolgharnein, V. Mahdavi, Derivative spectrophotometry and multivariate optimization for simultaneous removal of titan yellow and Bromophenol blue dyes using polyaniline@SiO2 nanocomposite. Microchem. J. 155, 104717 (2020). https://doi.org/10.1016/j.microc.2020.104717

M.A. Salem, R.G. Elsharkawy, M.F. Hablas, Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. Eur. Polym. J. 75, 577–590 (2016). https://doi.org/10.1016/j.eurpolymj.2015.12.027

M. Abbasian, P. Niroomand, M. Jaymand, Cellulose/polyaniline derivatives nanocomposites: Synthesis and their performance in removal of anionic dyes from simulated industrial effluents. J. Appl. Polym. Sci. 134, 45352 (2017). https://doi.org/10.1002/app.45352

X.L. Wei, Y.Z. Wang, S.M. Long, C. Bobeczko, A.J. Epstein, Synthesis and physical properties of highly Sulfonated Polyaniline. J. Am. Chem. Soc. 118, 2545–2555 (1996). https://doi.org/10.1021/ja952277i

G. Chakraborty, A. Bhattarai, R. De, Polyelectrolyte–dye interactions: An overview. Polymers 14, 598 (2022). https://doi.org/10.3390/polym14030598

D.E. Abd-El-Khalek, H.H.A.M. Hassan, S.R. Ramadan, Water-soluble sulfonated polyaniline as multifunctional scaling inhibitor for crystallization control in industrial applications. Chem. Eng. Res. Des. 169, 135–141 (2021). https://doi.org/10.1016/j.cherd.2021.03.004

Zein El-Din AM, Hassan HHAM, Abou El-Kheir MM,Youssef RM, Controlling soil surface crust formation using Nanosized sulfonated polyaniline. J Soil & Water Con. (Unified Journals) 1, 001–009 (2016)

H.H.A.M. Hassan, D.E. Abd-El-Khalek, M. Abdel Fattah, Synthesis and assessment of poly (5-nitro-2-aminophenol) as a new scaling inhibitor on controlling the precipitation of CaCO3 and CaSO4 in solution. J. Polym. Res. 29, 255 (2022). https://doi.org/10.1007/s10965-022-03104-4

Hassan HHAM, Abd-El-Khalek DE, Abdel Fattah M Assessment of self-doped poly (5-nitro-2-orthanilic acid) as a scaling inhibitor to control the precipitation of CaCO3 and CaSO4 in solution. Sci Reports 12, 9722. https://doi.org/10.1038/s41598-022-13564-9

H. Tang, A. Kitani, T. Yamashita, S. Ito, Highly sulfonated polyaniline electrochemically synthesized by polymerizing aniline-2,5-disulfonic acid and copolymerizing it with aniline. Synth. Met. 96, 43–48 (1998). https://doi.org/10.1016/S0379-6779(98)00061-7

Y.S. Shin, M. Park, H.Y. Kim, F.L. Jin, S.J. Park, Synthesis of silver-doped silica-complex nanoparticles for antibacterial materials. Bull. Korean Chem. Soc. 35, 2979–2984 (2014). https://doi.org/10.5012/bkcs.2014.35.10.2979

J. Stejskal, R.G. Gilbert, Polyaniline: Preparation of conducting polymer (IUPAC technical report). Pure Appl. Chem. 74, 857–867 (2002). https://doi.org/10.1351/pac200274050857

Y. Xu, L. Dai, J. Chen, J.Y. Gal, H. Wu, Synthesis and characterization of aniline and aniline-o-sulfonic acid copolymers. Eur. Polym. J. 43, 2072–2079 (2007). https://doi.org/10.1016/j.eurpolymj.2006.09.017

J. Shen, P.T. Grifths, S.J. Campbell, B. Utinger, M. Kalberer, S.E. Paulson, Ascorbate oxidation by iron, copper and reactive oxygen species: Review, model development, and derivation of key rate constants. Sci. Report. 11, 7417 (2021). https://doi.org/10.1038/s41598-021-86477-8

S.Y. Zhao, S.H. Chen, D.G. Li, X.G. Yang, H.Y. Ma, A convenient phase transfer route for Ag nanoparticles. Physica E Low-dimensional Syst. Nanostruct. 23(1–2), 92–96 (2004). https://doi.org/10.1016/j.physe.2004.01.008

M.F. Zainal, Y. Mohd, Characterization of PEDOT films for electrochromic applications. Polym.-Plast. Technol. Eng. 54, 276–281 (2015). https://doi.org/10.1080/03602559.2014.977422

K. Patil, X. Wang, T. Lin, Electrostatic coating of cashmere guard hair powder to fabrics: Silver ion loading and antibacterial properties. Powder Technol. 245, 40–47 (2013). https://doi.org/10.1016/j.powtec.2013.04.015

S. Sembiring, A. Riyanto, I. Junaidi, R. Situmeang, Structure and properties of silver-silica composite prepare from rice husk silica and silver nitrate. Ceramics-Silikáty 66(2), 67–177 (2022). https://doi.org/10.13168/cs.2022.0011

W.L. Bragg, The Crystalline State. Vol 1 (The Macmillan Company, New York, 1934) https://archive.org/details/crystallinestate01brag

P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of Rontgen rays. Nachr Ges Wiss Göttingen 26, 98–100 (1918)

C. Saravanan, S. Palaniappan, F. Chandezon, Synthesis of nanoporous conducting polyaniline using ternary surfactant. Mater. Lett. 62, 882–885 (2008)

Karthik, R; Meenakshi, S, Removal of hexavalent chromium ions using Polyaniline/silica gel composite. J. Water Process Eng. 1, 37–45 (2014)

J. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein, A.G. MacDiarmid, Effect of sulfonic acid group on Polyaniline backbone. J. Am. Chem. Soc. 113, 2665–2671 (1991). https://doi.org/10.1021/ja00007a046

H. Xia, Q. Wang, Ultrasonic irradiation: A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater. l, 2158–2165 (2002)

A.N. Andriianova, Y.N. Biglova, A.G. Mustafin, Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv. 10, 7468–7491 (2020). https://doi.org/10.1039/C9RA08644G

K.M. Elsherif, A. El-Dali, A.M. Ewlad-Ahmed, A. Treban, I. Alttayib, Removal of Safranin dye from aqueous solution by adsorption onto olive leaves powder. J. Mater. Environ. Sci. 12(3), 418–430 (2021)

D. Ozdes, A. Gundogdu, B. Kemer, C. Duran, H.B. Senturk, M. Soylak, Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study. J. Hazard. Mater. 166, 1480–1487 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.073

J. Azimvand, K. Didehban, S.A. Mirshokraie, Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylic acid adsorbent: Synthesis, properties, and application. Adsorpt. Sci. Technol. 36(7–8), 1422–1440 (2018). https://doi.org/10.1177/0263617418777836

V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar, Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol. 89(2), 121–124 (2003). https://doi.org/10.1016/s0960-8524(03)00058-0

I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and Platinum. J. Am. Chem. Soc. 40, 1361–1368 (1918). https://doi.org/10.1021/ja02242a004

S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimized isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 88(1), 143–152 (2003). https://doi.org/10.1016/s0960-8524(02)00281-x

R.K. Gautam, P.K. Gautam, S. Banerjee, V. Rawat, S. Soni, S.K. Sharma, M.C. Chattopadhyaya, Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. J. Environ. Chem. Eng. 3, 79–88 (2015). https://doi.org/10.1016/j.jece.2014.11.026

S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1–39 (1898)

S. Sharma, A. Hasan, N. Kumar, L.M. Pandey, Removal of methylene blue dye from aqueous solution using immobilized agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ. Sci. Pollut. Control. Ser. 25, 21605–21615 (2018). https://doi.org/10.1007/s11356-018-2280-z

G.J. Copelloa, A.M. Mebert, M. Raineri, M.P. Pesenti, L.E. Diaz, Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. J. Hazard. Mater. 186, 932–939 (2010). https://doi.org/10.1016/j.jhazmat.2010.11.097