Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris

Springer Science and Business Media LLC - Tập 9 - Trang 1-14 - 2009
Steve Schoonooghe1,2, Vladimir Kaigorodov1, Monika Zawisza1, Caroline Dumolyn1, Jurgen Haustraete1, Johan Grooten2, Nico Mertens1
1Department for Molecular Biomedical Research, VIB, Ghent, Belgium
2Molecular Immunology Lab, Ghent University, Ghent, Belgium

Tóm tắt

Tumour associated antigens on the surface of tumour cells, such as MUC1, are being used as specific antibody targets for immunotherapy of human malignancies. In order to address the poor penetration of full sized monoclonal antibodies in tumours, intermediate sized antibodies are being developed. The cost-effective and efficient production of these molecules is however crucial for their further success as anti-cancer therapeutics. The methylotropic P. pastoris yeast grows in cheap mineral media and is known for its short process times and the efficient production of recombinant antibody fragments like scFvs, bivalent scFvs and Fabs. Based on the anti-MUC1 PH1 Fab, we have developed bivalent PH1 bibodies and trivalent PH1 tribodies of intermediate molecular mass by adding PH1 scFvs to the C-terminus of the Fab chains using flexible peptide linkers. These recombinant antibody derivatives were efficiently expressed in both mammalian and P. pastoris cells. Stable production in NS0 cells produced 130.5 mg pure bibody and 27 mg pure tribody per litre. This high yield is achieved as a result of the high overall purification efficiency of 77%. Expression and purification of PH1 bibodies and tribodies from Pichia supernatant yielded predominantly correctly heterodimerised products, free of light chain homodimers. The yeast-produced bi- and tribodies retained the same specific activity as their mammalian-produced counterparts. Additionally, the yields of 36.8 mg pure bibody and 12 mg pure tribody per litre supernatant make the production of these molecules in Pichia more efficient than most other previously described trispecific or trivalent molecules produced in E. coli. Bi- and tribody molecules are efficiently produced in P. pastoris. Furthermore, the yeast produced molecules retain the same specific affinity for their antigen. These results establish the value of P. pastoris as an efficient alternative expression system for the production of recombinant multivalent Fab-scFv antibody derivatives.

Tài liệu tham khảo

Molina A: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma. Annu Rev Med. 2008, 59: 237-250. 10.1146/annurev.med.59.060906.220345. Nahta R, Esteva FJ: Trastuzumab: triumphs and tribulations. Oncogene. 2007, 26 (25): 3637-3643. 10.1038/sj.onc.1210379. Jain RK: Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990, 50 (3 Suppl): 814s-819s. Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H: Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet. 1995, 28 (2): 126-142. 10.2165/00003088-199528020-00004. Thrush GR, Lark LR, Clinchy BC, Vitetta ES: Immunotoxins: an update. Annu Rev Immunol. 1996, 14: 49-71. 10.1146/annurev.immunol.14.1.49. Holliger P, Winter G: Engineering bispecific antibodies. Curr Opin Biotechnol. 1993, 4 (4): 446-449. 10.1016/0958-1669(93)90010-T. Werner RG: Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol. 2004, 113: 1-3. 10.1016/j.jbiotec.2004.04.036. Behr TM, Memtsoudis S, Sharkey RM, Blumenthal RD, Dunn RM, Gratz S, Wieland E, Nebendahl K, Schmidberger H, Goldenberg DM, et al: Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: Influence of radiation dose and dose rate on toxicity and anti-tumor efficacy. Int J Cancer. 1998, 77 (5): 787-795. 10.1002/(SICI)1097-0215(19980831)77:5<787::AID-IJC19>3.0.CO;2-Z. Wu AM, Chen W, Raubitschek A, Williams LE, Neumaier M, Fischer R, Hu SZ, Odom-Maryon T, Wong JY, Shively JE: Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology. 1996, 2 (1): 21-36. 10.1016/1380-2933(95)00027-5. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM: Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996, 56 (13): 3055-3061. Adams GP, Schier R, McCall AM, Crawford RS, Wolf EJ, Weiner LM, Marks JD: Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer. 1998, 77 (9): 1405-1412. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D: Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999, 59 (2): 347-352. Sharkey RM, Goldenberg DM: Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin. 2006, 56 (4): 226-243. 10.3322/canjclin.56.4.226. Schrama D, Reisfeld RA, Becker JC: Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006, 5 (2): 147-159. 10.1038/nrd1957. Wu AM, Senter PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005, 23 (9): 1137-1146. 10.1038/nbt1141. Kostelny SA, Cole MS, Tso JY: Formation of a bispecific antibody by the use of leucine zippers. J Immunol. 1992, 148 (5): 1547-1553. Pack P, Pluckthun A: Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry. 1992, 31 (6): 1579-1584. 10.1021/bi00121a001. Chang HC, Bao Z, Yao Y, Tse AG, Goyarts EC, Madsen M, Kawasaki E, Brauer PP, Sacchettini JC, Nathenson SG, et al: A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. Proc Natl Acad Sci USA. 1994, 91 (24): 11408-11412. 10.1073/pnas.91.24.11408. Kipriyanov SM, Little M, Kropshofer H, Breitling F, Gotter S, Dubel S: Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Protein Eng. 1996, 9 (2): 203-211. 10.1093/protein/9.2.203. Freyre FM, Vazquez JE, Ayala M, Canaan-Haden L, Bell H, Rodriguez I, Gonzalez A, Cintado A, Gavilondo JV: Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris. J Biotechnol. 2000, 76 (2–3): 157-163. 10.1016/S0168-1656(99)00183-2. Ning D, Junjian X, Qing Z, Sheng X, Wenyin C, Guirong R, Xunzhang W: Production of recombinant humanized anti-HBsAg Fab fragment from Pichia pastoris by fermentation. J Biochem Mol Biol. 2005, 38 (3): 294-299. Cregg JM, Vedvick TS, Raschke WC: Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y). 1993, 11 (8): 905-910. 10.1038/nbt0893-905. Schoonjans R, Willems A, Schoonooghe S, Fiers W, Grooten J, Mertens N: Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol. 2000, 165 (12): 7050-7057. Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4 (1): 45-60. 10.1038/nrc1251. Wesseling J, Valk van der SW, Hilkens J: A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996, 7 (4): 565-577. Tamada S, Goto M, Nomoto M, Nagata K, Shimizu T, Tanaka S, Sakoda K, Imai K, Yonezawa S: Expression of MUC1 and MUC2 mucins in extrahepatic bile duct carcinomas: its relationship with tumor progression and prognosis. Pathol Int. 2002, 52 (11): 713-723. 10.1046/j.1440-1827.2002.01414.x. Hinoda Y, Ikematsu Y, Horinochi M, Sato S, Yamamoto K, Nakano T, Fukui M, Suehiro Y, Hamanaka Y, Nishikawa Y, et al: Increased expression of MUC1 in advanced pancreatic cancer. J Gastroenterol. 2003, 38 (12): 1162-1166. 10.1007/s00535-003-1224-6. Fujita K, Denda K, Yamamoto M, Matsumoto T, Fujime M, Irimura T: Expression of MUC1 mucins inversely correlated with post-surgical survival of renal cell carcinoma patients. Br J Cancer. 1999, 80 (1–2): 301-308. 10.1038/sj.bjc.6690355. Mayer M, Kies U, Kammermeier R, Buchner J: BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem. 2000, 275 (38): 29421-29425. 10.1074/jbc.M002655200. Matlack KE, Misselwitz B, Plath K, Rapoport TA: BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell. 1999, 97 (5): 553-564. 10.1016/S0092-8674(00)80767-9. Liu YY, Woo JH, Neville DM: Overexpression of an anti-CD3 immunotoxin increases expression and secretion of molecular chaperone BiP/Kar2p by Pichia pastoris. Appl Environ Microbiol. 2005, 71 (9): 5332-5340. 10.1128/AEM.71.9.5332-5340.2005. Willems A, Leoen J, Schoonooghe S, Grooten J, Mertens N: Optimizing expression and purification from cell culture medium of trispecific recombinant antibody derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 786 (1–2): 161-176. Sauer PW, Burky JE, Wesson MC, Sternard HD, Qu L: A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng. 2000, 67 (5): 585-597. 10.1002/(SICI)1097-0290(20000305)67:5<585::AID-BIT9>3.0.CO;2-H. Farid SS: Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Analyt Technol Biomed Life Sci. 2007, 848 (1): 8-18. 10.1016/j.jchromb.2006.07.037. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z: Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods. 2002, 267 (2): 213-226. 10.1016/S0022-1759(02)00148-5. Cregg JM, Cereghino JL, Shi J, Higgins DR: Recombinant protein expression in Pichia pastoris. Mol Biotechnol. 2000, 16 (1): 23-52. 10.1385/MB:16:1:23. Gasser B, Mattanovich D: Antibody production with yeasts and filamentous fungi: on the road to large scale?. Biotechnol Lett. 2007, 29 (2): 201-212. 10.1007/s10529-006-9237-x. Lange S, Schmitt J, Schmid RD: High-yield expression of the recombinant, atrazine-specific Fab fragment K411B by the methylotrophic yeast Pichia pastoris. J Immunol Methods. 2001, 255 (1–2): 103-114. 10.1016/S0022-1759(01)00351-9. Wang XB, Zhao BF, Zhao Q, Piao JH, Liu J, Lin Q, Huang HL: A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J Biochem. 2004, 135 (4): 555-565. 10.1093/jb/mvh065. Liu J, Zhao Q, Zhao B, Cheng J, Wang X, Song L, Zhong Z, Lin Q, Huang H: A new format of single chain tri-specific antibody with diminished molecular size efficiently induces ovarian tumor cell killing. Biotechnol Lett. 2005, 27 (22): 1821-1827. 10.1007/s10529-005-6732-4. Atwell JL, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hudson PJ: scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng. 1999, 12 (7): 597-604. 10.1093/protein/12.7.597. Bayly AM, Kortt AA, Hudson PJ, Power BE: Large-scale bacterial fermentation and isolation of scFv multimers using a heat-inducible bacterial expression vector. J Immunol Methods. 2002, 262 (1–2): 217-227. 10.1016/S0022-1759(02)00021-2. Henderikx P, Coolen-van Neer N, Jacobs A, Linden van der E, Arends JW, Mullberg J, Hoogenboom HR: A human immunoglobulin G1 antibody originating from an in vitro-selected Fab phage antibody binds avidly to tumor-associated MUC1 and is efficiently internalized. Am J Pathol. 2002, 160 (5): 1597-1608. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP: Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol. 1987, 7 (1): 379-387. Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991, 108 (2): 193-199. 10.1016/0378-1119(91)90434-D. O'Mahoney JV, Adams TE: Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection. DNA Cell Biol. 1994, 13 (12): 1227-1232. 10.1089/dna.1994.13.1227.