Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems

Springer Science and Business Media LLC - Tập 124 - Trang 151-182 - 2012
Thomas Richter1, Andreas Springer2, Boris Vexler2
1Institut für Angewandte Mathematik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
2Lehrstuhl für Mathematische Optimierung, Technische Universität München, Fakultät für Mathematik, Garching b. München, Germany

Tóm tắt

We present an efficient and easy to implement approach to solving the semidiscrete equation systems resulting from time discretization of nonlinear parabolic problems with discontinuous Galerkin methods of order $$r$$ . It is based on applying Newton’s method and decoupling the Newton update equation, which consists of a coupled system of $$r+1$$ elliptic problems. In order to avoid complex coefficients which arise inevitably in the equations obtained by a direct decoupling, we decouple not the exact Newton update equation but a suitable approximation. The resulting solution scheme is shown to possess fast linear convergence and consists of several steps with same structure as implicit Euler steps. We construct concrete realizations for order one to three and give numerical evidence that the required computing time is reduced significantly compared to assembling and solving the complete coupled system by Newton’s method.

Tài liệu tham khảo

Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007) Besier, M., Rannacher, R.: Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow. Int. J. Numer. Methods Fluids 458, 2735–2757 (2012) Brezinski, C., Van Iseghem, J.: A taste of Padé approximation. In: Acta numerica, 1995, Acta Numer., pp. 53–103. Cambridge University Press, Cambridge (1995) Chrysafinos, K.: Discontinuous Galerkin approximations for distributed optimal control problems constrained by parabolic PDEs. Int. J. Numer. Anal. Model. 4(3–4), 690–712 (2007) Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia, PA (2002) Dunford, N., Schwartz, J.T.: Linear Operators: Part I. Wiley Classics Library. Wiley, New York (1988) Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991) Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: Optimal error estimates in \(L_\infty L_2\) and \(L_\infty L_\infty \). SIAM J. Numer. Anal. 32(3), 706–740 (1995) Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal. 19, 611–643 (1985) Frank, R., Schneid, J., Überhuber, C.W.: Order results for implicit Runge–Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22(3), 515–534 (1985) Hairer, E., Wanner, G.: Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111(1–2), 93–111 (1999) Hussain, S., Schieweck, F., Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation. J. Numer. Math. 19(1), 41–62 (2011) Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Lecture Notes in Computational Science and Engineering, vol. 16. Springer, Berlin (2001) Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press, New York (1974) Meidner, D., Vexler, B.: Adaptive space–time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007) Meidner, D., Vexler, B.: A priori error estimates for space–time finite element approximation of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008) Meidner, D., Vexler, B.: A priori error estimates for space–time finite element approximation of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008) Meidner, D., Vexler, B.: A priori error analysis of the Petrov–Galerkin Crank–Nicolson Scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011) Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2011) Perron, O.: Die Lehre von den Kettenbrüchen. Band II. Analytisch-funktionentheoretische Kettenbrüche, 3rd edn. B. G. Teubner Verlagsgesellschaft, Stuttgart (1957) Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143–177 (1999) Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008) Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000) Schötzau, D., Wihler, T.: A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115, 475–509 (2010) Gascoigne: The finite element toolkit. http://www.gascoigne.uni-hd.de RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne [25]. http://www.rodobo.uni-hd.de Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Spinger Series in Computational Mathematics, vol. 25. Springer, Berlin (2006) Wanner, G., Hairer, E., Nørsett, S.P.: Order stars and stability theorems. BIT 18(4), 475–489 (1978) Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7(4), 449–457 (1987) Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: \(hp\)-Discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Engrg. 190(49–50), 6685–6708 (2001) Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987) (Translated from the German by C.B. Thomas and M.J. Thomas) Ypma, T.J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21(3), 583–590 (1984)