Efficient methods and practical guidelines for simulating isotope effects

Journal of Chemical Physics - Tập 138 Số 1 - 2013
Michele Ceriotti1, Thomas E. Markland2
1University of Oxford 1 Physical and Theoretical Chemistry Laboratory, , South Parks Road, Oxford OX1 3QZ, United Kingdom
2Stanford University 2 Department of Chemistry, , Stanford, California 94305, USA

Tóm tắt

The shift in chemical equilibria due to isotope substitution is frequently exploited to obtain insight into a wide variety of chemical and physical processes. It is a purely quantum mechanical effect, which can be computed exactly using simulations based on the path integral formalism. Here we discuss how these techniques can be made dramatically more efficient, and how they ultimately outperform quasi-harmonic approximations to treat quantum liquids not only in terms of accuracy, but also in terms of computational cost. To achieve this goal we introduce path integral quantum mechanics estimators based on free energy perturbation, which enable the evaluation of isotope effects using only a single path integral molecular dynamics trajectory of the naturally abundant isotope. We use as an example the calculation of the free energy change associated with H/D and 16O/18O substitutions in liquid water, and of the fractionation of those isotopes between the liquid and the vapor phase. In doing so, we demonstrate and discuss quantitatively the relative benefits of each approach, thereby providing a set of guidelines that should facilitate the choice of the most appropriate method in different, commonly encountered scenarios. The efficiency of the estimators we introduce and the analysis that we perform should in particular facilitate accurate ab initio calculation of isotope effects in condensed phase systems.

Từ khóa


Tài liệu tham khảo

2001, Rev. Mineral. Geochem., 43, 1, 10.2138/gsrmg.43.1.1

2009, Isotope Effects: In the Chemical, Geological, and Bio Sciences

1987, Phys. Rev. Lett., 58, 563, 10.1103/PhysRevLett.58.563

1989, J. Chem. Phys., 91, 7749, 10.1063/1.457242

1997, Chem. Phys. Lett., 278, 91, 10.1016/S0009-2614(97)00886-5

1994, J. Chem. Phys., 101, 6168, 10.1063/1.468399

2004, J. Chem. Phys., 121, 3368, 10.1063/1.1777575

2003, Phys. Rev. Lett., 91, 215503, 10.1103/PhysRevLett.91.215503

2009, J. Chem. Phys., 131, 024501, 10.1063/1.3167790

2011, Proc. Natl. Acad. Sci. U.S.A., 108, 6369, 10.1073/pnas.1016653108

2012, Proc. Natl. Acad. Sci. U.S.A., 109, 7988, 10.1073/pnas.1203365109

1932, Phys. Rev., 40, 749, 10.1103/PhysRev.40.749

1933, Phys. Rev., 44, 31, 10.1103/PhysRev.44.31

1938, Phys. Rev., 54, 912, 10.1103/PhysRev.54.912

2009, J. Chem. Phys., 130, 094509, 10.1063/1.3082401

1964, Quantum Mechanics and Path Integrals

1981, J. Chem. Phys., 74, 4078, 10.1063/1.441588

1984, J. Chem. Phys., 80, 860, 10.1063/1.446740

1993, J. Chem. Phys., 99, 2796, 10.1063/1.465188

1999, J. Chem. Phys., 110, 3275, 10.1063/1.478193

2010, J. Chem. Phys., 133, 124104, 10.1063/1.3489925

2008, J. Chem. Phys., 129, 024105, 10.1063/1.2953308

2008, Chem. Phys. Lett., 464, 256, 10.1016/j.cplett.2008.09.019

2009, J. Chem. Phys., 131, 094102, 10.1063/1.3216520

2009, Phys. Rev. Lett., 103, 030603, 10.1103/PhysRevLett.103.030603

2011, J. Chem. Phys., 134, 084104, 10.1063/1.3556661

2012, Phys. Rev. Lett., 109, 100604, 10.1103/PhysRevLett.109.100604

1996, J. Chem. Phys., 104, 4077, 10.1063/1.471221

1999, Comput. Phys. Commun., 118, 166, 10.1016/S0010-4655(99)00208-8

2008, Comput. Sci. Eng., 10, 26, 10.1109/MCSE.2008.148

2009, J. Phys. Soc. Jpn., 78, 104723, 10.1143/JPSJ.78.104723

2007, J. Chem. Phys., 127, 114309, 10.1063/1.2768930

2009, J. Phys. Chem. B, 113, 5702, 10.1021/jp810590c

2011, J. Chem. Theory Comput., 7, 2358, 10.1021/ct2000556

1994, Solid State Commun., 90, 295, 10.1016/0038-1098(94)90154-6

2010, Phys. Rev. B, 82, 174306, 10.1103/PhysRevB.82.174306

2011, Phys. Rev. B, 83, 220302, 10.1103/PhysRevB.83.220302

2011, Phys. Rev. B, 83, 134305, 10.1103/PhysRevB.83.134305

2012, J. Phys.: Condens. Matter, 24, 365401, 10.1088/0953-8984/24/36/365401

1987, J. Chem. Phys., 87, 6070, 10.1063/1.453481

1986, Annu. Rev. Phys. Chem., 37, 401, 10.1146/annurev.pc.37.100186.002153

1982, J. Chem. Phys., 76, 5150, 10.1063/1.442815

1995, Rev. Mod. Phys., 67, 279, 10.1103/RevModPhys.67.279

1989, J. Chem. Phys., 91, 6359, 10.1063/1.457403

2012, Proc. R. Soc. London, Ser. A, 468, 2, 10.1098/rspa.2011.0413

2005, J. Chem. Phys., 123, 104101, 10.1063/1.2013257

2007, Nature (London), 445, 528, 10.1038/nature05508

2000, Science, 287, 1630, 10.1126/science.287.5458.1630

2012, Nature (London), 490, 376, 10.1038/nature11507

2007, J. Chem. Phys., 126, 014101, 10.1063/1.2408420

2007, J. Chem. Phys., 126, 234504, 10.1063/1.2745291

2008, Phys. Rev. Lett., 101, 017801, 10.1103/PhysRevLett.101.017801

1994, Geochim. Cosmochim. Acta, 58, 3425, 10.1016/0016-7037(94)90096-5