Efficient malic acid production from glycerol with Ustilago trichophora TZ1

Biotechnology for Biofuels - Tập 9 - Trang 1-8 - 2016
Thiemo Zambanini1, Eda Sarikaya1, Wiebke Kleineberg1, Joerg M. Buescher2, Guido Meurer2, Nick Wierckx1, Lars M. Blank1
1Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
2BRAIN AG, Zwingenberg, Germany

Tóm tắt

The large surplus of crude glycerol, as main low-value waste stream in biodiesel production, has led to the investigation of new possibilities for the production of value-added chemicals from this feedstock. New and efficient (bio-) catalysts are needed that are able to convert glycerol to versatile chemical building blocks. This would contribute to further develop away from a mainly petroleum based, to a sustainable, bio-based industry. One promising group of discussed building block chemicals are dicarbonic acids. Here, we report the efficient synthesis of malate from glycerol using Ustilago trichophora RK089, which was identified in a screening of 74 Ustilaginaceae. For economically feasible production that can compete with existing processes, a high productivity is required. By adaptive laboratory evolution, the growth and production rate were increased by 2.5- and 6.6-fold, respectively. Further medium optimization increased the final titer, yield, and overall production rate to 196 g L−1, 0.82 gmal g gly −1 , and 0.39 g L−1 h−1, respectively. This titer is the highest reported for microbial malate production, making U. trichophora TZ1 a promising microbial production host for malate from crude glycerol, especially since it is not genetically engineered. Since this production process starts from an industrial waste stream as substrate and yields an interesting platform chemical, which can be used to replace petro-chemicals, it greatly contributes to a sustainable bio-economy.

Tài liệu tham khảo

Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng. 1991;37(11):1108–16. Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 2008;26(2):100–8. Werpy T, Petersen GR, Aden A, Bozell JJ, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S. Top value added chemicals from biomass. Volume 1—results of screening for potential candidates from sugars and synthesis gas; 2004. Goldberg I, Rokem JS, Pines O. Organic acids: old metabolites, new themes. J Chem Technol Biotechnol. 2006;81(10):1601–11. Abe S, Furuya A. Method of producing l-malic acid by fermentation. 1962. Magnuson JK, Lasure LL. Organic acid production by filamentous fungi. In: Tkacz JS, Lange L, editors. Advances in fungal biotechnology for industry, agriculture and medicine. New York; 2004. p. 307–340. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008;74(9):2766–77. West TP. Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett. 2011;33(12):2463–7. Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J. 2008;40(2):312–20. Zhang X, Wang X, Shanmugam KT, Ingram LO. L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol. 2011;77(2):427–34. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol. 2013;97(20):8903–12. Klement T, Büchs J. Itaconic acid—a biotechnological process in change. Bioresour Technol. 2013;135:422–31. Geiser E, Wiebach V, Wierckx N, Blank LM. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. BMC Fungal Biol Biotechnol. 2014;1:2. Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels. 2012;5:13. Anand P, Saxena RK. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1, 3-propanediol production from Citrobacter freundii. N Biotechnol. 2012;29(2):199–205. Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates-the U.S. Department of Energy’s “Top 10″ revisited. Green Chem. 2010;12(4):539–54. West TP. Crude glycerol: a feedstock for organic acid production by microbial bioconversion. J Microbial Biochem Technol. 2012; 4. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. Microbial production of 1, 3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett. 2006;28(21):1755–9. Otte B, Grunwaldt E, Mahmoud O, Jennewein S. Genome shuffling in Clostridium diolis DSM 15410 for improved 1, 3-propanediol production. Appl Environ Microbiol. 2009;75(24):7610–6. Ashby RD, Solaiman DKY, Foglia TA. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ. 2004;12(3):105–12. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 2011;46(1):210–8. Scholten E, Renz T, Thomas J. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett. 2009;31(12):1947–51. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol. 2003;46(2):124–30. Rymowicz W, Rywinska A, Marcinkiewicz M. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett. 2009;31(3):377–80. Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact. 2013;12:64. Sauer U. Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol. 2001;73:129–69. Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol. 2003;69(4):1990–8. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005;5(10):925–34. Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002;420(6912):186–9. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci. 2013;14(2):129–34. Batti M, Schweiger L. Process for the production of itaconic acid. 1963. Jeon JM, Rajesh T, Song E, Lee HW, Lee HW, Yang YH. Media optimization of Corynebacterium glutamicum for succinate production under oxygen-deprived condition. J Microbiol Biotechnol. 2013;23(2):211–7. Zelle RM, de Hulster E, Kloezen W, Pronk JT, van Maris AJA. Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2010;76(3):744–50. Michielsen MJF, Frielink C, Wijffels RH, Tramper J, Beeftink HH. Growth of Ca-D-malate crystals in a bioreactor. Biotechnol Bioeng. 2000;69(5):548–58. Klement T, Milker S, Jäger G, Grande PM, de Maria PD, Büchs J. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact. 2012;11:43. Kubicek CP, Punt P, Visser J. Production of organic acids by filamentous fungi. In: Hofrichter M, editors. Industrial Applications. 2011. 215–234. Linning R, Lin D, Lee N, Abdennadher M, Gaudet D, Thomas P, Mills D, Kronstad JW, Bakkeren G. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics. 2004;166(1):99–111. Willis RB, Montgomery ME, Allen PR. Improved method for manual, colorimetry determination of total Kjeldahl nitrogen using salicylate. J Agric Food Chem. 1996;44(7):1804–7.