Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbaspour-Fard M (2000) Discrete element modelling of the dynamic behaviour of non-spherical particulate materials. Ph.D. thesis, The University of Newcastle upon Tyne http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324869 , https://theses.ncl.ac.uk/dspace/bitstream/10443/970/1/Abbaspour-Fard00.pdf
Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. doi: 10.1016/j.powtec.2010.09.030 , http://linkinghub.elsevier.com/retrieve/pii/S0032591010005164
Barr AH (1981) Superquadrics and angle-preserving transformations. IEEE Comput Graph Appl 1(1):11–23. doi: 10.1109/MCG.1981.1673799
Benvenuti L (2014) Establishing the predictive capabilities of DEM simulations: sliding and rolling friction coefficients of non-spherical particles. In: CFD 2014 Proceedings, pp 1–7
Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput Geotech 44:73–82. doi: 10.1016/j.compgeo.2012.03.012 , http://linkinghub.elsevier.com/retrieve/pii/S0266352X12000535
Boon CW, Houlsby GT, Utili S (2013) A new contact detection algorithm for three-dimensional non-spherical particles. Powder Technol. 248:94–102. doi: 10.1016/j.powtec.2012.12.040 , http://linkinghub.elsevier.com/retrieve/pii/S003259101200839X
Campello EMB (2015) A description of rotations for DEM models of particle systems. Comput Part Mech 2(2):109–125. doi: 10.1007/s40571-015-0041-z , http://link.springer.com/10.1007/s40571-015-0041-z
Chang SW, Chen CS (2008) A non-iterative derivation of the common plane for contact detection of polyhedral blocks. IntJ Numer Methods Eng 74(5):734–753. doi: 10.1002/nme.2174 , http://doi.wiley.com/10.1002/nme.2174
Cleary PW (2004) Large scale industrial DEM modelling. Eng Comput 21(2/3/4), 169–204. doi: 10.1108/02644400410519730 , http://www.emeraldinsight.com/doi/abs/10.1108/02644400410519730
Cleary PW (2010) DEM prediction of industrial and geophysical particle flows. Particuology 8(2):106–118. doi: 10.1016/j.partic.2009.05.006 , http://linkinghub.elsevier.com/retrieve/pii/S1674200109001308
Cleary PW, Sawley ML (2002) DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 26:89–111. doi: 10.1016/S0307-904X(01)00050-6
Cleary, PW, Stokes, N, Hurley J (1997) Efficient collision detection for three dimensional super-ellipsoidal particles. Proceedings of 8th international conference on field programmable logic and applications, pp 1–7. http://citeseerx.ist.psu.edu/viewdoc/download?
Cundall P (1988) Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abst 25(3), 107–116. doi: 10.1016/0148-9062(88)92293-0 , http://linkinghub.elsevier.com/retrieve/pii/0148906288922930
Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi: 10.1680/geot.1979.29.1.47 , http://www.icevirtuallibrary.com/doi/10.1680/geot.1979.29.1.47
Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59:525–541. doi: 10.1016/j.ces.2003.09.037
Dong K, Wang C, Yu A (2015) A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem Eng Sci 126:500–516. doi: 10.1016/j.ces.2014.12.059 , http://www.sciencedirect.com/science/article/pii/S0009250914007866 , http://linkinghub.elsevier.com/retrieve/pii/S0009250914007866
Eberly D (2014) Dynamic collision detection using oriented bounding boxes. http://www.geometrictools.com/Documentation/DynamicCollisionDetection.pdf
Ericson C (2005) Real-time collision detection. CRC Press, New York
Favier J, AbbaspourFard M, Kremmer M, Raji A, Abbaspour-Fard M, Kremmer M, Raji A (1999) Shape representation of axisymmetrical, nonspherical particles in discrete element simulation using multielement model particles. Eng Comput 16(4):467–480. doi: 10.1108/02644409910271894 , http://www.emeraldinsight.com
Feng YT, Han K, Owen DRJ (2012) Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput Methods Appl Mech Eng 205–208(1):169–177. doi: 10.1016/j.cma.2011.02.010 , http://linkinghub.elsevier.com/retrieve/pii/S0045782511000454
Goldman R (2005) Curvature formulas for implicit curves and surfaces. Comput Aided Geomet Desig 33(7):632–658. doi: 10.1016/j.cagd.2005.06.005
Hamilton WR (1847) LXIX. On quaternions; or on a new system of imaginaries in algebra. Philos Mag Ser 3 30(203), 458–461. doi: 10.1080/14786444708645426 , http://www.tandfonline.com
Höhner D, Wirtz S, Scherer V (2014) A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol 253:256–265. doi: 10.1016/j.powtec.2013.11.023 , http://linkinghub.elsevier.com/retrieve/pii/S0032591013007067
Houlsby G (2009) Potential particles: a method for modelling non-circular particles in DEM. Comput Geotech 36(6):953–959. doi: 10.1016/j.compgeo.2009.03.001 , http://linkinghub.elsevier.com/retrieve/pii/S0266352X09000469
Jaklič, A, Leonardis, A, Solina F (2000) Segmentation and recovery of superquadrics, computational imaging and vision, 20. Springer, Dordrecht. doi: 10.1007/978-94-015-9456-1 , http://link.springer.com
Jaklic, A, Solina F (2003) Moments of superellipsoids and their application to range image registration. IEEE Trans Syst Man Cybernet Part B Cybernetics 33(4), 648–57. doi: 10.1109/TSMCB.2003.814299 , http://www.ncbi.nlm.nih.gov/pubmed/18238214
Kiefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4(3):502–502. doi: 10.1090/S0002-9939-1953-0055639-3 , http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-1953-0055639-3
Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Progress Comput Fluid Dyn Int J 12(2/3):140. doi: 10.1504/PCFD.2012.047457 , http://www.inderscience.com/link.php?id=47457
Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C (2010) Cylindrical object contact detection for use in discrete element method simulations. Part II-Experimental validation. Chem Eng Sci 65(22):5863–5871. doi: 10.1016/j.ces.2010.08.007 , http://linkinghub.elsevier.com/retrieve/pii/S0009250910004744
Kremmer M, Favier JF (2001) A method for representing boundaries in discrete element modelling-part I: Geometry and contact detection. Int J Numer Methods Eng 51(12):1407–1421. doi: 10.1002/nme.184 , http://doi.wiley.com/10.1002/nme.184
Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V (2008) A study on the validity of the multi-sphere Discrete Element Method. Powder Technol 188(2):153–165. doi: 10.1016/j.powtec.2008.04.037 , http://linkinghub.elsevier.com/retrieve/pii/S0032591008002143
Langston PA, Al-Awamle MA, Fraige FY, Asmar BN (2004) Distinct element modelling of non-spherical frictionless particle flow. Chem Eng Sci 59(2):425–435. doi: 10.1016/j.ces.2003.10.008
Liu SD, Zhou ZY, Zou PR, Pinson D, Yu AB (2014) Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol 253:70–79. doi: 10.1016/j.powtec.2013.11.001
Lu G, Third J, Müller C (2015) Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem Eng Sci 127:425–465. doi: 10.1016/j.ces.2014.11.050 , http://linkinghub.elsevier.com/retrieve/pii/S0009250914007040
Lu G, Third JR, Müller CR (2012) Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem Eng Sci 78:226–235. doi: 10.1016/j.ces.2012.05.041 , http://linkinghub.elsevier.com/retrieve/pii/S0009250912003223
Marigo M, Stitt EH (2015) Discrete Element Method (DEM) for Industrial applications: comments on calibration and validation for the modelling of cylindrical pellets. KONA Powder Part J 32:236–252. doi: 10.14356/kona.2015016 , https://www.jstage.jst.go.jp/article/kona/32/0/32_2015016/_article
Markauskas D, Kačianauskas R, Džiugys A, Navakas R (2009) Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granular Matter 12(1):107–123. doi: 10.1007/s10035-009-0158-y , http://link.springer.com
Miller TF, Eleftheriou M, Pattnaik P, Ndirango A, Newns D, Martyna GJ (2002) Symplectic quaternion scheme for biophysical molecular dynamics. J Chem Phys 116(20):8649. doi: 10.1063/1.1473654 , http://scitation.aip.org/content/aip/journal/jcp/116/20/10.1063/1.1473654
Munjiza, A, Andrews K (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer 149(2), 131–149. doi: 10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S . ftp://crack.seismo.unr.edu/downloads/russell/partitioning_space/munjiza_1998_nbs.pdf
Munjiza A, Rougier E, John NWM (2006) MR linear contact detection algorithm. Int J Numer Methods Eng 66(1):46–71. doi: 10.1002/nme.1538
Nezami, E, Hashash Y (2004) A fast contact detection algorithm for 3-D discrete element method. Comput Geotech 31(7): 575–587. doi: 10.1016/j.compgeo.2004.08.002 , http://linkinghub.elsevier.com/retrieve/pii/S0266352X04001016 , http://www.sciencedirect.com/science/article/pii/S0266352X04001016
Omelyan IP (1998) Algorithm for numerical integration of the rigid-body equations of motion. Phys Rev E 58(1):1169–1172. doi: 10.1103/PhysRevE.58.1169 , http://arxiv.org/abs/physics/9901027 , http://link.aps.org
Omelyan IP (1998) Numerical integration of the equations of motion for rigid polyatomics: the matrix method. Comput Phys Commun 109(2–3):171–183. doi: 10.1016/S0010-4655(98)00024-1 , http://arxiv.org/abs/physics/9901026 , http://linkinghub.elsevier.com/retrieve/pii/S0010465598000241
Omelyan IP (1998) On the numerical integration of motion for rigid polyatomics: the modified quaternion approach. Computn Phy 12(1):97–103. doi: 10.1063/1.168642
Omelyan IP (1999) A new leapfrog integrator of rotational motion. The Revised angular-momentum approach. Mol Simul 22(3):213–236. doi: 10.1080/08927029908022097 , http://arxiv.org/abs/physics/9901025 , http://www.tandfonline.com
Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phy 117(1):1–19. doi: 10.1006/jcph.1995.1039 , http://linkinghub.elsevier.com/retrieve/pii/S002199918571039X
Portal R, Dias J, de Sousa L (2010) Contact detection between convex superquadric surfaces. Arch Mech Eng LVI I(2):165–186. doi: 10.2478/v10180-010-0009-8 , http://www.degruyter.com/view/j/meceng.2010.lvii.issue-2/v10180-010-0009-8/v10180-010-0009-8.xml
Rougier, E, Munjiza, A, Latham J (2004) Shape selection menu for grand scale discontinua systems. Eng Comput 21(2/3/4), 343–359. doi: 10.1108/02644400410519820 , http://www.emeraldinsight.com
Verlet L (1967) Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103. doi: 10.1103/PhysRev.159.98
Vu-Quoc L, Zhang X, Walton OR (2000) A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput Methods Appl Mech Eng 187(99):483–528. doi: 10.1016/S0045-7825(99)00337-0
Walton, OR, Braun RL (1993) Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. http://www.grainflow.com/index_files/Rotary_Drum_Simulation_DOE-NSF-1993.pdf
Williams JR, Pentland AP (1992) Superquadrics and modal dynamics for discrete elements in interactive design. Eng Comput 9(2):115–127. doi: 10.1108/eb023852 , http://www.emeraldinsight.com
Xu WX, Chen HS, Lv Z (2011) An overlapping detection algorithm for random sequential packing of elliptical particles. Phys A 390(13):2452–2467. doi: 10.1016/j.physa.2011.02.048
Zheng QJ, Zhou ZY, Yu AB (2013) Contact forces between viscoelastic ellipsoidal particles. Powder Technol 248:25–33. doi: 10.1016/j.powtec.2013.03.020
Zhu H, Zhou Z, Yang R, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62(13):3378–3396. doi: 10.1016/j.ces.2006.12.089 , http://linkinghub.elsevier.com/retrieve/pii/S000925090700262X