Efficient and library-friendly synthesis of 4-N-substituted 6-bromopyrido[2,3-d]pyrimidines under microwave irradiation
Tóm tắt
In this paper, a novel synthetic method for 4-N-substituted 6-bromopyrido[2,3-d]pyrimidines was reported. Starting from 2-aminonicotinonitrile, following by bromination of aromatic ring, condensation, cyclization, and Dimroth rearrangement, a series of 21 new pyrido[2,3-d]pyrimidine derivatives was prepared in high yields (up to 98%). In the last two steps, microwave irradiation was used. The structures of synthesized compounds were determined by NMR, IR, and HRMS techniques. The results showed that application of microwave irradiation has a beneficial effect for the preparation of desired products, as it is simple and efficient method for improving the yields and reducing the formation of undesirable by-products.
Tài liệu tham khảo
Beyzaei H, Moghaddam-Manesh M, Aryan R et al (2017) Synthesis in vitro antibacterial evaluation of 6-substituted 4-amino-pyrazolo[3,4-d]pyrimidines. Chem Pap 71:1685–1691. https://doi.org/10.1007/s11696-017-0163-2
Buron F, Merour JY, Akssira M, Guillaumet G, Routier S (2015) Recent advances in the chemistry and biology of pyridopyrimidines. Eur J Med Chem 95:76–95. https://doi.org/10.1016/j.ejmech.2015.03.029
Degoey DA, Betebenner DA, Grampovnik DJ, Liu D, Pratt JK, Tufano MD, He W, Krishnan P, Pilot-Matias TJ, Marsh KC, Molla A, Kempf DJ, Maring CJ (2013) Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg Med Chem Lett 23:3627–3630. https://doi.org/10.1016/j.bmcl.2013.04.009
Elsaedany SK, Zein MA, AbedelRehim EM, Keshk RM (2016) Synthesis of some novel pyrido[2,3-d]pyrimidine and pyrido[3,2-e][1,3,4]triazolo and tetrazolo[1,5-c]pyrimidine derivatives as potential antimicrobial and anticancer agents. J Heterocycl Chem 53:1534–1543. https://doi.org/10.1002/jhet.3058
Gangjee A, Namjoshi OA, Raghavan S, Queener SF, Kisliuk RL, Cody V (2013) Design, synthesis and molecular modeling of novel pyrido[2,3-d]pyrimidine analogs as antifolates: application of Buchwald–Hartwig aminations of heterocycles. J Med Chem 56:4422–4441. https://doi.org/10.1021/jm400086g
Gineinah MM, Nasr MNA, Badr SMI, El-Husseiny WM (2013) Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives. Med Chem Res 22:3943–3952. https://doi.org/10.1007/s00044-012-0396-0
Hou J, Wan SH, Wang GF, Zhang TT, Li ZH, Tian YX, Yu YH, Wu XY, Zhang JJ (2016) Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor. Eur J Med Chem 118:276–289. https://doi.org/10.1016/j.ejmech.2016.04.026
Hricovíniová Z, Hricovíni M, Kozics K (2017) New series of quinazolinone derived Schiff’s bases: synthesis, spectroscopic properties and evaluation of their antioxidant and cytotoxic activity. Chem Pap. https://doi.org/10.1007/s11696-017-0345-y
Insuasty D, Abonia R, Insuasty B, Quiroga J, Laali KK, Nogueras M, Cobo J (2017) Microwave-assisted synthesis of diversely substituted quinoline-based dihydropyridopyrimidine and dihydropyrazolopyridine hybrids. ACS Comb Sci 19:555–563. https://doi.org/10.1021/acscombsci.7b00091
Kammasud N, Boonyarat C, Sanphanya K, Utsintong M, Tsunoda S, Sakurai H, Saiki I, André I, Grierson DS, Vajragupta O (2009) 5-substituted pyrido[2,3-d]pyrimidine, an inhibitor against three receptor tyrosine kinases. Bioorg Med Chem Lett 19:745–750. https://doi.org/10.1016/j.bmcl.2008.12.023
Kanth SR, Reddy GV, Kishore KH, Rao PS, Narsaiah B, Narayana Murthy US (2006) Convenient synthesis of novel 4-substitutedamino-5-trifluoromethyl–2,7-disubstituted pyrido[2,3-d] pyrimidines and their antibacterial activity. Eur J Med Chem 46:1001–1016. https://doi.org/10.1016/j.ejmech.2006.03.028
Krueger AC, Madigan DL, Beno DW, Betebenner DA, Carrick R, Green BE, He W, Liu D, Maring CJ, McDaniel KF, Mo H, Molla A, Motter CE, Pilot-Matias TJ, Tufano MD, Kempf DJ (2012) Novel hepatitis C virus replicon inhibitors: synthesis and structure–activity relationships of fused pyrimidine derivatives. Bioorg Med Chem Lett 22:2212–2215. https://doi.org/10.1016/j.bmcl.2012.01.096
Kurumurthy C, Rao PS, Swamy BV, Kumar GS, Rao PS, Narsaiah B, Velatooru LR, Pamanji R, Rao JV (2011) Synthesis of novel alkyltriazole tagged pyrido[2,3-d]pyrimidine derivatives and their anticancer activity. Eur J Med Chem 46:3462–3468. https://doi.org/10.1016/j.ejmech.2011.05.011
Lacbay CM, Mancuso J, Lin YS, Bennett N, Götte M, Tsantrizos YS (2014) Modular assembly of purine-like bisphosphonates as inhibitors of HIV-1 reverse transcriptase. J Med Chem 57:7435–7449. https://doi.org/10.1021/jm501010f
Mieczkowski A, Wińska P, Kaczmarek M et al (2017) 2′-Deoxy-2′-azidonucleoside analogs: synthesis and evaluation of antitumor and antimicrobial activity. Chem Pap. https://doi.org/10.1007/s11696-017-0339-9
Pan DH, Wang TZ, Xiao GM (2017) Microwave-assisted synthesis of 1,4-bis(difluoromethyl)benzene. Chem Pap 71:1249–1254. https://doi.org/10.1007/s11696-016-0118-z
Ravi KS, Venkat RG, Hara KK, Shanthan RP, Narsaiaha B, Surya NMU (2006) Convenient synthesis of novel 4-substitutedamino-5-trifluoromethyl-2,7-disubstituted pyrido[2,3-d]pyrimidines and their antibacterial activity. Eur J Med Chem 41:1011–1016. https://doi.org/10.1016/j.ejmech.2006.03.028
Saurat T, Buron F, Rodrigues N, Tauzia M, Colliandre L, Bourg S, Bonnet P, Guillaumet G, Akssira M, Corlu A, Guillouzo C, Berthier P, Rio P, Jourdan M, Bénédetti H, Routier S (2014) Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors. J Med Chem 57:613–631. https://doi.org/10.1021/jm401138v
Song ZD, Jin Y, Ge Y, Wang CY, Zhang JB, Tang ZY, Peng JY, Liu KX, Li YX, Ma XD (2016) Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorg Med Chem 24:5505–5512. https://doi.org/10.1016/j.bmc.2016.09.001
Tu S, Zhang J, Zhu X, Xu J, Zhang Y, Wang Q, Jia R, Jiang B, Zhang J (2006) New potential inhibitors of cyclin-dependent kinase 4: design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation. Bioorg Med Chem Lett 16:3578–3581. https://doi.org/10.1016/j.bmcl.2006.03.084
Vercek B, Leban I, Stanovnik B, Tisler M (1979) Heterocycles. 182. Neighboring group interaction in ortho-substituted heterocycles. 2. 1,2,4-oxadiazolylpyridines and pyrido[2,3-d]pyrimidine 3-oxides. J Org Chem 44:1695–1699. https://doi.org/10.1021/jo01324a024
Wu K, Ai J, Liu Q, Chen T, Zhao A, Peng X, Wang Y, Ji Y, Yao Q, Xu Y, Geng M, Zhang A (2012) Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: synthesis and SAR study as tyrosine kinase c-Met inhibitors. Bioorg Med Chem Lett 22:6368–6372. https://doi.org/10.1016/j.bmcl.2012.08.075
Yan LQ, Chen Y, Sun XF, You MJ, Chen XD, Gu Q, Zhang YM (2017) Microwave-assisted solvent-free catalyzed synthesis and luminescence properties of 1,2,4,5-tetrasubstituted imidazoles bearing a 4-aminophenyl substituent. Chem Pap 71:627–637. https://doi.org/10.1007/s11696-016-0051-1
Yoon DS, Han Y, Stark TM, Haber JC, Gregg BT, Stankovich SB (2004) Efficient synthesis of 4-aminoquinazoline and thieno[3,2-d]pyrimidin-4-ylamine derivatives by microwave irradiation. Org Lett 6:4775–4778. https://doi.org/10.1021/ol047919y
Zheng GZ, Mao Y, Lee CH, Pratt JK, Koenig JR, Perner RJ, Cowart MD, Gfesser GA, McGaraughty S, Chu KL, Zhu C, Yu HX, Kohlhaas K, Alexander KM, Wismer CT, Mikusa J, Jarvis MF, Kowaluk EA, Stewart AO (2003) Adenosine kinase inhibitors: polar 7-substituent of pyridopyrimidine derivatives improving their locomotor selectivity. Bioorg Med Chem Lett 13:3041–3044. https://doi.org/10.1016/S0960-894X(03)00642-5
Zong C, Gu H, Zhang L, Jin Y, Sun Y (2018) Microwave-accelerated Dimroth rearrangement for the synthesis of pyrido[2,3-d]pyrimidin-4-amine derivatives. Chin J Org Chem. https://doi.org/10.6023/cjoc201711028.R2