Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu quả của Nanocomposite TiO2/Fe2NiO4 trong quá trình phân hủy quang xúc tác Acid Orange 7 (AO7) dưới ánh sáng UV
Tóm tắt
Một phương pháp mới kết hợp giữa titanium dioxide (TiO2) và oxide sắt-nickel (Fe2NiO4) dưới dạng hạt nano (NPs) đã được thực hiện trong nghiên cứu này thông qua kỹ thuật phối trộn trạng thái rắn và được khảo sát như một chất xúc tác quang đầy triển vọng cho xử lý nước thải dệt nhuộm. Các hạt nano được kiểm tra để xác định cấu trúc tinh thể, hình thái bề mặt, và phân phối kích thước. Quá trình phân hủy quang của dung dịch nước AO7 có nồng độ cao (acid orange 7) dưới ánh sáng UV đã được tối ưu hóa cho cả tỷ lệ kết hợp hạt nano và độ axit của dung dịch (pH). Việc kết hợp TiO2 với Fe2NiO4 đã dẫn đến sự gia tăng tới 87% của hằng số tốc độ động học bậc một (k) của phản ứng quang xúc tác, so với chỉ có TiO2. Dưới điều kiện tối ưu, việc loại bỏ hoàn toàn màu sắc của dung dịch nước AO7 50 mg/L đã được thực hiện thành công sau 40 phút chiếu UV chỉ bằng 100 mg/L TiO2/Fe2NiO4 với tỷ lệ tối ưu 2 wt.% Fe2NiO4 so với TiO2, điều này liên quan đến quá trình phân hủy quang xúc tác tốt nhất của AO7 dưới ánh sáng UV. Hơn nữa, dung dịch AO7 có pH= 9 cho thấy hiệu suất phân hủy cao nhất, trong khi sự phân hủy ở pH 3 và 12 là tương tự nhau và cao hơn đáng kể so với dung dịch gần trung tính (pH bằng 6.5). Đối với các điều kiện tối ưu, mức tiêu thụ năng lượng điện tại các điều kiện tối ưu, được biểu diễn dưới dạng năng lượng điện trên đơn vị, là 50.3 kWh/m3.
Từ khóa
#TiO2 #Fe2NiO4 #quang xúc tác #phân hủy #Acid Orange 7 #nước thải dệt nhuộm #năng lượng điệnTài liệu tham khảo
Ababneh, R., Telfah, A., Jum’h, I., Abudayah, M., Al-Abdallat, Y., Lambert, J., & Hergenröder, R. (2018). 1h nmr spectroscopy to investigate the kinetics and the mechanism of proton charge carriers ionization and transportation in hydrophilic/hydrophobic media: Methyl sulfonic acid as a protonic ion source in water/alcohol binary mixtures. Journal of Molecular Liquids, 265, 621–628.
Ahmad, A. A., Al-Bataineh, Q. M., Alsaad, A. M., Al-Nawafleh, D. M., Al-Nawafleh, A. M., & Telfah, A. D. (2021a). Synthesis and characterization of thin films based on azobenzene derivative anchored to CeO2 nanoparticle for photoswitching applications. Photochemistry and Photobiology, 98(4), 823–830.
Ahmad, A. A., Al-Bataineh, Q. M., Al-Nawafleh, D. M., & Telfah, A. D. (2021b). Photoisomerization kinetics of photoswitchable thin films based on nanostructure/molecular layers of AlN-AO7. Photochemistry and Photobiology, 98(4), 831–842.
Akl, A. A., & Hassanien, A. (2015). Microstructure and crystal imperfections of nanosized CdSxSe1− x thermally evaporated thin films. Superlattices and Microstructures, 85, 67–81.
Al-Abdallat, Y., Jum’h, I., Al Bsoul, A., Jumah, R., & Telfah, A. (2019). Photocatalytic degradation dynamics of methyl orange using coprecipitation synthesized fe 3 o 4 nanoparticles. Water, Air, & Soil Pollution, 230(12), 1–16.
Al-Bataineh, Q. M., Alsaad, A., Ahmad, A., & Al-Sawalmih, A. (2019). Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: Sol–gel method versus ab initio calculations. Journal of Electronic Materials, 48(8), 5028–5038.
Al-Bataineh, Q. M., Telfah, M., Ahmad, A. A., Alsaad, A. M., Qattan, I. A., Baaziz, H., Charifi, Z., & Telfah, A. (2020). Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO: CeO2 mixed oxide thin films. Photonics, 7(4), 112.
Al-Bataineh, Q. M., Ahmad, A., Alsaad, A., Qattan, I., Bani-Salameh, A. A., & Telfah, A. D. (2020). Kinematics of photoisomerization processes of PMMA-BDK-MR polymer composite thin films. Polymers, 12(6), 1275.
Al-Bataineh, Q. M., Ahmad, A. A., Alsaad, A. M., & Telfah, A. (2020). New insight on photoisomerization kinetics of photo-switchable thin films based on azobenzene/graphene hybrid additives in polyethylene oxide. Polymers, 12(12), 2954.
Al-Mamun, M., Kader, S., Islam, M., & Khan, M. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248.
Alsaad, A., Ahmad, A., Qattan, I., Al-Bataineh, Q. M., & Albataineh, Z. (2020). Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films. Crystals, 10(4), 252.
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y.A.-G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160.
Bauer, C., Jacques, P., & Kalt, A. (1999). Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chemical Physics Letters, 307(5–6), 397–406.
Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry, 73(4), 627–637.
Bureš, F. (2014). Fundamental aspects of property tuning in push–pull molecules. RSC Advances, 4(102), 58826–58851.
Chakrabarti, S., & Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 112(3), 269–278.
Chen, Y., Yang, S., Wang, K., & Lou, L. (2005). Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. Journal of Photochemistry and Photobiology a: Chemistry, 172(1), 47–54.
Chiu, Y.-H., Chang, T.-F.M., Chen, C.-Y., Sone, M., & Hsu, Y.-J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9(5), 430.
Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233–261.
Feng, W., Nansheng, D., & Helin, H. (2000). Degradation mechanism of azo dye CI reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere, 41(8), 1233–1238.
Ghodake, G., Jadhav, U., Tamboli, D., Kagalkar, A., & Govindwar, S. (2011). Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian Journal of Microbiology, 51(4), 501–508.
Habibi, M. H., & Fakhri, F. (2017). Hydrothermal synthesis of nickel iron oxide nano-composite and application as magnetically separable photocatalyst for degradation of Solar Blue G dye. Journal of Materials Science: Materials in Electronics, 28(19), 14091–14096.
Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. (2019). Review on: Titanium dioxide applications. Energy Procedia, 157, 17–29.
Han, F., Kambala, V., Dharmarajan, R., Liu, Y., & Naidu, R. (2018). Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts. Environmental Technology & Innovation, 12, 27–42.
Horiuchi, S., Tokunaga, Y., Giovannetti, G., Picozzi, S., Itoh, H., Shimano, R., Kumai, R., & Tokura, Y. (2010). Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature, 463(7282), 789.
Hossen, A., Chowdhury, T., & Mondal, I. (2022). Purification of textile dye-contained wastewater by three alternative promising techniques: Adsorption, Biodegradation and Advanced Oxidation Processes (AOPs)-A review. J Textile Eng Fashion Technol, 8(3), 96–98.
Iervolino, G., Zammit, I., Vaiano, V., & Rizzo, L. (2020). Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: A critical review. Topics in Current Chemistry, 378, 7.
Ijadpanah-Saravy, H., Safari, M., Khodadadi-Darban, A., & Rezaei, A. (2014). Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Analytical Letters, 47(10), 1772–1782.
Khasawneh, O. F. S., & Palaniandy, P. (2021). Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review. Environmental Technology & Innovation, 21, 101230.
Khosla, E., Kaur, S. & Dave, P. N. (2013). Mechanistic study of adsorption of acid orange-7 over aluminum oxide nanoparticles. Journal of Engineering, 2013, 593534.
Lau, Y.-Y., Wong, Y.-S., Teng, T.-T., Morad, N., Rafatullah, M., & Ong, S.-A. (2014). Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chemical Engineering Journal, 246, 383–390.
Maeda, H., Maeda, T., & Mizuno, K. (2012). Absorption and fluorescence spectroscopic properties of 1-and 1, 4-silyl-substituted naphthalene derivatives. Molecules, 17(5), 5108–5125.
Mancuso, A., Sacco, O., Sannino, D., Pragliola, S., & Vaiano, V. (2020). Enhanced visible-light-driven photodegradation of Acid Orange 7 azo dye in aqueous solution using Fe-N co-doped TiO2. Arabian Journal of Chemistry, 13(11), 8347–8360.
Mani, P., Fidal, V., Bowman, K., Breheny, M., Chandra, T., Keshavarz, T., & Kyazze, G. (2019). Degradation of azo dye (acid orange 7) in a microbial fuel cell: Comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Frontiers in Energy Research, 7, 101.
Manzoor, J., & Sharma, M. (2020). Impact of textile dyes on human health and environment. Impact of textile dyes on public health and the environment (pp. 162–169). IGI Global.
McManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J. D., & Morris, M. A. (2015). A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. Journal of Molecular Catalysis a: Chemical, 406, 51–57.
Nasr, M., Eid, C., Habchi, R., Miele, P., & Bechelany, M. (2018). Recent progress on titanium dioxide nanomaterials for photocatalytic applications. Chemsuschem, 11(18), 3023–3047.
Nguyen, C. H., Fu, C.-C., & Juang, R.-S. (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413–427.
Perera, H. (2019). Removal of acid orange 7 dye from wastewater: Review. Int J Waste Resour, 9(367), 2.
Pires, M. J. R., Ferra, M. I. A., & Marques, A. M. (2013). Ionization of Acid Orange 7 in various ionic media. Journal of Chemical & Engineering Data, 58(8), 2181–2186.
Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environmental Science and Pollution Research, 28(8), 9050–9066.
Rehman, S., Ullah, R., Butt, A., & Gohar, N. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 170(2–3), 560–569.
Robotti, M., Dosta, S., Cano, I., Concustell, A., Cinca, N., & Guilemany, J. (2016). Attrition and cryogenic milling powder production for low pressure cold gas spray and composite coatings characterization. Advanced Powder Technology, 27(4), 1257–1264.
Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163.
Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116–1137.
Silva, A. C., Silvestre, A. J., Freire, C. S., & Vilela, C. (2021). “Modification of textiles for functional applications,” Fundamentals of Natural Fibres and Textiles (pp. 303–365). Elsevier.
Sun, H., Zhou, G., Liu, S., Ang, H. M., Tadé, M. O., & Wang, S. (2013). Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. Chemical Engineering Journal, 231, 18–25.
Suwannaruang, T., Hildebrand, J. P., Taffa, D. H., Wark, M., Kamonsuangkasem, K., Chirawatkul, P., & Wantala, K. (2020). Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture. Journal of Photochemistry and Photobiology A: Chemistry, 391, 112371.
Suzuki, M., Suzuki, Y., Uzuka, K., & Kawase, Y. (2020). Biological treatment of non-biodegradable azo-dye enhanced by zero-valent iron (ZVI) pre-treatment. Chemosphere, 259, 127470.
Thekkedath, A., Sugaraj, S., & Sridharan, K. (2022). “Nanomaterials in advanced oxidation processes (AOPs) in anionic dye removal,” Advanced Oxidation Processes in Dye-Containing Wastewater (pp. 129–165). Springer.
Vaiano, V., Sacco, O., & Sannino, D. (2019). Electric energy saving in photocatalytic removal of crystal violet dye through the simultaneous use of long-persistent blue phosphors, nitrogen-doped TiO2 and UV-light emitting diodes. Journal of Cleaner Production, 210, 1015–1021.
Watson, D. G. (2020). Pharmaceutical analysis E-book: a textbook for pharmacy students and pharmaceutical chemists. Elsevier Health Sciences.
Williamson, G., & Smallman, R. (1956). III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine, 1(1), 34–46.
Zaheer, Z., Bawazir, W. A., Al-Bukhari, S. M., & Basaleh, A. S. (2019). Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics, 232, 109–120.
Zhou Z. & Wang, H. (2014). Noncompensated codoping TiO2 nanowires: The enhanced visible light photocatalytic properties. International Journal of Photoenergy, 2014. https://doi.org/10.1155/2014/568185
Zhu, N., Gu, L., Yuan, H., Lou, Z., Wang, L., & Zhang, X. (2012). Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2-naphthol-4-sulfonic acid using Fenton’s reagent. Water Research, 46(12), 3859–3867.