Efficacy, safety and drug survival of thioguanine as maintenance treatment for inflammatory bowel disease: a retrospective multi-centre study in the United Kingdom
Tóm tắt
Thioguanine (TG) is a thiopurine which has been used for patients with inflammatory bowel disease (IBD), who have failed azathioprine (AZA) or mercaptopurine (MP) due to adverse events or suboptimal response. Its widespread use has been hampered due to concerns about nodular regenerative hyperplasia (NRH) of the liver. The aim of this study was to investigate the long-term efficacy and safety of low-dose TG therapy in IBD patients failing AZA and MP. A retrospective multicentre study was performed in IBD patients who failed prior treatment with conventional thiopurines with or without following immunomodulation (thiopurine-allopurinol, biologicals, methotrexate, tacrolimus) and were subsequently treated with TG as rescue monotherapy between 2003 and 2019 at three hospitals in the United Kingdom. Clinical response, adverse events, laboratory results, imaging and liver biopsies were retrospectively collected. A total of 193 patients (57% female and 64% Crohn’s disease) were included, with a median daily TG dose of 20 mg (range: 20–40 mg), a median treatment duration of 23 months (IQR 10–47) and a median follow-up of 36 months (IQR 22–53). The clinical response rate at 12 months was 65 and 54% remained on TG until the end of follow-up. Adverse events consisted primarily of elevated liver tests (6%), myelotoxicity (7%) and rash (5%). NRH was histologically diagnosed in two patients and two other patients (1%) developed non-cirrhotic portal hypertension. The median 6-TGN and TPMT levels were 953 pmol/8 × 108 RBC (IQR 145–1761) and 47 mu/L (IQR 34.5–96). Long-term follow-up suggests that TG can be an effective and well-tolerated therapy in more than half of difficult-to-treat and multi-therapy failing IBD patients. Findings of this study indicate that TG can be used safely and the occurrence of hepatotoxicity was low. The incidence rate of NRH was within the background incidence.
Tài liệu tham khảo
Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95.
Hanauer SB, Sandborn WJ, Lichtenstein GR. Evolving considerations for thiopurine therapy for inflammatory bowel diseases-a clinical practice update: commentary. Gastroenterology. 2019;156(1):36–42.
Rogler G, Sandborn WJ. Is there still a role for thiopurines in Crohn’s disease? Gastroenterology. 2013;145(4):714–6.
Blackwell J, Saxena S, Pollok RC. Role of thiopurines as disease-modifying agents in Crohn’s disease. Gut. 2018;67(12):2229–30.
Chatu S, Subramanian V, Saxena S, Pollok RC. The role of thiopurines in reducing the need for surgical resection in Crohn’s disease: a systematic review and meta-analysis. Am J Gastroenterol. 2014;109(1):23–34 quiz 35.
Chhaya V, Pollok RCG, Cecil E, et al. Impact of early thiopurines on surgery in 2770 children and young people diagnosed with inflammatory bowel disease: a national population-based study. Aliment Pharmacol Ther. 2015;42(8):990–9.
Qiu Y, Chen BL, Feng R, et al. Prolonged azathioprine treatment reduces the need for surgery in early Crohn’s disease. J Gastroenterol Hepatol. 2018;33(3):664–70.
Ramadas AV, Gunesh S, Thomas GAO, Williams GT, Hawthorne AB. Natural history of Crohn’s disease in a population-based cohort from Cardiff (1986–2003): a study of changes in medical treatment and surgical resection rates. Gut. 2010;59(9):1200–6.
Vidigal FM, de Souza GS, Chebli LA, et al. Azathioprine is more effective than mesalazine at preventing recurrent bowel obstruction in patients with ileocecal Crohn’s disease. Med Sci Monit. 2014;20:2165–70.
Lakatos PL, Golovics PA, David G, et al. Has there been a change in the natural history of Crohn’s disease? Surgical rates and medical management in a population-based inception cohort from Western Hungary between 1977-2009. Am J Gastroenterol. 2012;107(4):579–88.
Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut. 2017;66(2):199–209.
Lim SZ, Chua EW. Revisiting the role of thiopurines in inflammatory bowel disease through pharmacogenomics and use of novel methods for therapeutic drug monitoring. Front Pharmacol. 2018;9:1107.
de Boer NK, van Bodegraven AA, Jharap B, de Graaf P, Mulder CJ. Drug insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Clin Pract Gastroenterol Hepatol. 2007;4(12):686–94.
Simsek M, Deben DS, Horjus CS, et al. Sustained effectiveness, safety and therapeutic drug monitoring of tioguanine in a cohort of 274 IBD patients intolerant for conventional therapies. Aliment Pharmacol Ther. 2019;50(1):54–65.
Pavlidis P, Ansari A, Duley J, Oancea I, Florin T. Splitting a therapeutic dose of thioguanine may avoid liver toxicity and be an efficacious treatment for severe inflammatory bowel disease: a 2-center observational cohort study. Inflamm Bowel Dis. 2014;20(12):2239–46.
Ward MG, Patel KV, Kariyawasam VC, et al. Thioguanine in inflammatory bowel disease: long-term efficacy and safety. United European Gastroenterol J. 2017;5(4):563–70.
De Bruyne R, Portmann B, Samyn M, et al. Chronic liver disease related to 6-thioguanine in children with acute lymphoblastic leukaemia. J Hepatol. 2006;44(2):407–10.
Ravikumara M, Hill FG, Wilson DC, et al. 6-Thioguanine-related chronic hepatotoxicity and variceal haemorrhage in children treated for acute lymphoblastic leukaemia--a dual-centre experience. J Pediatr Gastroenterol Nutr. 2006;42(5):535–8.
Ferlitsch A, Teml A, Reinisch W, et al. 6-thioguanine associated nodular regenerative hyperplasia in patients with inflammatory bowel disease may induce portal hypertension. Am J Gastroenterol. 2007;102(11):2495–503.
Lemaitre M, Kirchgesner J, Rudnichi A, et al. Association between use of thiopurines or tumor necrosis factor antagonists alone or in combination and risk of lymphoma in patients with inflammatory bowel disease. JAMA. 2017;318(17):1679–86.
Beigel F, Steinborn A, Schnitzler F, et al. Risk of malignancies in patients with inflammatory bowel disease treated with thiopurines or anti-TNF alpha antibodies. Pharmacoepidemiol Drug Saf. 2014;23(7):735–44.
Bayoumy AB, Simsek M, Seinen ML, et al. The continuous rediscovery and the benefit-risk ratio of thioguanine, a comprehensive review. Expert Opin Drug Metab Toxicol. 2020;16(2):111–23. https://doi.org/10.1080/17425255.2020.1719996.
Seinen ML, van Asseldonk DP, Mulder CJ, de Boer NK. Dosing 6-thioguanine in inflammatory bowel disease: expert-based guidelines for daily practice. J Gastrointestin Liver Dis. 2010;19(3):291–4.
Ansari A, Elliott T, Fong F, et al. Further experience with the use of 6-thioguanine in patients with Crohn’s disease. Inflamm Bowel Dis. 2008;14(10):1399–405.
Omer O, Salehi S, Loganayagam A. PTH-079 6-thioguanine as an alternative therapy in inflammatory bowel disease? - experience in a London district general hospital. Gut. 2016;65:A258.
Simsek M, de Boer NKH, Mulder CJJ. Continued development of drugs: the path of thioguanine. Ned Tijdschr Geneeskd. 2018;162:D1757.
Bayoumy AB, de Boer NKH, Ansari AR, Crouwel F, Mulder CJJ. Unrealized potential of drug repositioning in Europe during COVID-19 and beyond: a physician’s perspective. J Pharm Policy and Pract. 2020;13(1):45.
Simsek M, Meijer B, van Bodegraven AA, de Boer NKH, Mulder CJJ. Finding hidden treasures in old drugs: the challenges and importance of licensing generics. Drug Discov Today. 2018;23(1):17–21.
Satsangi J, Silverberg MS, Vermeire S, Colombel JF. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55(6):749–53.
U.S. Department Of Health And Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0 https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 4 Jan 2020.
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9.
National Health Service of UK. http://www.hra-decisiontools.org.uk/research/. Accessed 1 Mar 2019.
Morris K. Revising the Declaration of Helsinki. Lancet (London, England). 2013;381(9881):1889–90.
Meijer B, Mulder CJ, Peters GJ, van Bodegraven AA, de Boer NK. Efficacy of thioguanine treatment in inflammatory bowel disease: a systematic review. World J Gastroenterol. 2016;22(40):9012–21.
Dubinsky MC, Vasiliauskas EA, Singh H, et al. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterology. 2003;125(2):298–303.
van Asseldonk DP, Jharap B, Verheij J, et al. The prevalence of nodular regenerative hyperplasia in inflammatory bowel disease patients treated with thioguanine is not associated with clinically significant liver disease. Inflamm Bowel Dis. 2016;22(9):2112–20.
De Boer NK, Tuynman H, Bloemena E, et al. Histopathology of liver biopsies from a thiopurine-naive inflammatory bowel disease cohort: prevalence of nodular regenerative hyperplasia. Scand J Gastroenterol. 2008;43(5):604–8.
Wanless IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2,500 autopsies and a new classification of benign hepatocellular nodules. Hepatology (Baltimore, Md). 1990;11(5):787–97.
Vernier-Massouille G, Cosnes J, Lemann M, et al. Nodular regenerative hyperplasia in patients with inflammatory bowel disease treated with azathioprine. Gut. 2007;56(10):1404–9.
Musumba CO. Review article: the association between nodular regenerative hyperplasia, inflammatory bowel disease and thiopurine therapy. Aliment Pharmacol Ther. 2013;38(9):1025–37.
van Asseldonk DP, Simsek M, de Boer NKH, et al. Limited relevance and progression of histological alterations in the liver during thioguanine therapy in inflammatory bowel disease patients. Scand J Gastroenterol. 2019;54(6):753–60.
Simsek M, Meijer B, Ramsoekh D, et al. Clinical course of nodular regenerative hyperplasia in Thiopurine treated inflammatory bowel disease patients. Clin Gastroenterol Hepatol. 2019;17(3):568–70.
Morris JM, Oien KA, McMahon M, et al. Nodular regenerative hyperplasia of the liver: survival and associated features in a UK case series. Eur J Gastroenterol Hepatol. 2010;22(8):1001–5.
Akbari M, Shah S, Velayos FS, Mahadevan U, Cheifetz AS. Systematic review and meta-analysis on the effects of thiopurines on birth outcomes from female and male patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(1):15–22.
Simsek M, Lambalk CB, Wilschut JA, Mulder CJJ, de Boer NKH. The associations of thiopurines with male fertility and paternally exposed offspring: a systematic review and meta-analysis. Hum Reprod Update. 2018;24(2):192–206. https://doi.org/10.1093/humupd/dmx034.
van den Berg SA, de Boer M, van der Meulen-de Jong AE, et al. Safety of tioguanine during pregnancy in inflammatory bowel disease. J Crohns Colitis. 2016;10(2):159–65.
Ansari A, Hassan C, Duley J, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16(10):1743–50.