Efficacy of the motile sperm organelle morphology examination (MSOME) in predicting pregnancy after intrauterine insemination

Reproductive Biology and Endocrinology - Tập 9 - Trang 1-9 - 2011
Livia D Akl1, Joao Batista A Oliveira1,2,3, Claudia G Petersen1,2,3, Ana L Mauri2,3, Liliane FI Silva1,2,3, Fabiana C Massaro2,3, Ricardo LR Baruffi2,3, Mario Cavagna2,3, Jose G Franco1,2,3
1Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, Brazil
2Center for Human Reproduction Prof Franco Jr, Ribeirao Preto, Brazil
3Paulista Center for Diagnosis, Research and Training, Ribeirao Preto, Brazil

Tóm tắt

Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI). A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400× magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined. Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%. The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI.

Tài liệu tham khảo

Group TECW: Intrauterine insemination. Hum Reprod Update. 2009, 15: 265-277. Marchetti C, Dewailly D: Intrauterine insemination: indications and methods. Rev Prat. 2006, 56: 500-506. Bensdorp AJ, Cohlen BJ, Heineman MJ, Vandekerckhove P: Intra-uterine insemination for male subfertility. Cochrane Database Syst Rev. 2007, CD000360- Baccetti B: Microscopical advances in assisted reproduction. J Submicrosc Cytol Pathol. 2004, 36: 333-339. Gianaroli L, Magli MC, Ferraretti AP, Crippa A, Lappi M, Capitani S, Baccetti B: Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil Steril. 2010, 93: 807-813. 10.1016/j.fertnstert.2008.10.024. Petersen CG, Vagnini LD, Mauri AL, Massaro FC, Cavagna M, Baruffi RL, Oliveira JB, Franco JG: Relationship between DNA damage and sperm head birefringence. Reprod Biomed Online. 2011, 22: 583-589. 10.1016/j.rbmo.2011.03.017. Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M: Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia. 2010, 42: 13-19. 10.1111/j.1439-0272.2009.00948.x. Prinosilova P, Kruger T, Sati L, Ozkavukcu S, Vigue L, Kovanci E, Huszar G: Selectivity of hyaluronic acid binding for spermatozoa with normal Tygerberg strict morphology. Reprod Biomed Online. 2009, 18: 177-183. 10.1016/S1472-6483(10)60253-2. Petersen CG, Massaro FC, Mauri AL, Oliveira JB, Baruffi RL, Franco JG: Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification. Reprod Biol Endocrinol. 2010, 8: 149-10.1186/1477-7827-8-149. Ombelet W, Bosmans E, Janssen M, Cox A, Vlasselaer J, Gyselaers W, Vandeput H, Gielen J, Pollet H, Maes M, et al: Semen parameters in a fertile versus subfertile population: a need for change in the interpretation of semen testing. Hum Reprod. 1997, 12: 987-993. 10.1093/humrep/12.5.987. Menkveld R, Wong WY, Lombard CJ, Wetzels AM, Thomas CM, Merkus HM, Steegers-Theunissen RP: Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an effort towards standardization of in-vivo thresholds. Hum Reprod. 2001, 16: 1165-1171. 10.1093/humrep/16.6.1165. Coetzee K, Kruge TF, Lombard CJ: Predictive value of normal sperm morphology: a structured literature review. Hum Reprod Update. 1998, 4: 73-82. 10.1093/humupd/4.1.73. Gunalp S, Onculoglu C, Gurgan T, Kruger TF, Lombard CJ: A study of semen parameters with emphasis on sperm morphology in a fertile population: an attempt to develop clinical thresholds. Hum Reprod. 2001, 16: 110-114. 10.1093/humrep/16.1.110. Kruger T, Van der Merwe F, Van Waart J: The Tygerberg strict criteria: what are the clinical thresholds for in vitro fertilization, intrauterine insemination, and in vivo fertilization?. Atlas of Human Sperm Morphology Evaluation. Edited by: Kruger T, Franken D. 2004, London: Taylor and Francis, 13-18. van der Merwe FH, Kruger TF, Oehninger SC, Lombard CJ: The use of semen parameters to identify the subfertile male in the general population. Gynecol Obstet Invest. 2005, 59: 86-91. 10.1159/000082368. Tasdemir I, Tasdemir M, Tavukcuoglu S, Kahraman S, Biberoglu K: Effect of abnormal sperm head morphology on the outcome of intracytoplasmic sperm injection in humans. Hum Reprod. 1997, 12: 1214-1217. 10.1093/humrep/12.6.1214. De Vos A, Van De Velde H, Joris H, Verheyen G, Devroey P, Van Steirteghem A: Influence of individual sperm morphology on fertilization, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil Steril. 2003, 79: 42-48. 10.1016/S0015-0282(02)04571-5. Baccetti B, Capitani S, Collodel G, Estenoz M, Gambera L, Piomboni P: Infertile spermatozoa in a human carrier of robertsonian translocation 14;22. Fertil Steril. 2002, 78: 1127-1130. 10.1016/S0015-0282(02)03379-4. Chemes EH, Rawe YV: Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum Reprod Update. 2003, 9: 405-428. 10.1093/humupd/dmg034. Palermo GD, Neri QV, Takeuchi T, Rosenwaks Z: ICSI: where we have been and where we are going. Semin Reprod Med. 2009, 27: 191-201. 10.1055/s-0029-1202309. Berkovitz A, Eltes F, Soffer Y, Zabludovsky N, Beyth Y, Farhi J, Levran D, Bartoov B: ART success and in vivo sperm cell selection depend on the ultramorphological status of spermatozoa. Andrologia. 1999, 31: 1-8. Bartoov B, Berkovitz A, Eltes F: Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001, 345: 1067-1068. 10.1056/NEJM200110043451416. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y: Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002, 23: 1-8. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, Artzi S, Gross M, Barak Y: Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003, 80: 1413-1419. 10.1016/j.fertnstert.2003.05.016. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d'Angelo D, Antinori S: Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online. 2008, 16: 835-841. 10.1016/S1472-6483(10)60150-2. Nadalini M, Tarozzi N, Distratis V, Scaravelli G, Borini A: Impact of intracytoplasmic morphologically selected sperm injection on assisted reproduction outcome: a review. Reprod Biomed Online. 2009, 19 (Suppl 3): 45-55. Oliveira JB, Massaro FC, Mauri AL, Petersen CG, Nicoletti AP, Baruffi RL, Franco JG: Motile sperm organelle morphology examination is stricter than Tygerberg criteria. Reprod Biomed Online. 2009, 18: 320-326. 10.1016/S1472-6483(10)60088-0. Oliveira JB, Massaro FC, Baruffi RL, Mauri AL, Petersen CG, Silva LF, Vagnini LD, Franco JG: Correlation between semen analysis by motile sperm organelle morphology examination and sperm DNA damage. Fertil Steril. 2010, 94: 1937-1940. 10.1016/j.fertnstert.2010.01.042. World Health Organization: WHO laboratory manual for the examination and processing of human semen. 2010, Geneva: World Health Organization, 5 Vagnini L, Baruffi RL, Mauri AL, Petersen CG, Massaro FC, Pontes A, Oliveira JB, Franco JG: The effects of male age on sperm DNA damage in an infertile population. Reproductive biomedicine online. 2007, 15: 514-519. 10.1016/S1472-6483(10)60382-3. Franco JG, Baruffi RL, Mauri AL, Petersen CG, Oliveira JB, Vagnini L: Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008, 17: 42-45. 10.1016/S1472-6483(10)60291-X. Berkovitz A, Eltes F, Yaari S, Katz N, Barr I, Fishman A, Bartoov B: The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod. 2005, 20: 185-190. ASTM: Standard E1951-02 Physical and Mechanical Testing Standards West Conshohocken, PA. [http://www.astm.org] Press WH: Numerical recipes in FORTRAN: the art of scientific computing. 1992, Cambridge England; New York, NY, USA: Cambridge University Press, 2 Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982, 143: 29-36. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44: 837-845. 10.2307/2531595. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H: Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. Fertil Steril. 2010, 93: 79-88. 10.1016/j.fertnstert.2008.09.058. Badawy A, Elnashar A, Eltotongy M: Effect of sperm morphology and number on success of intrauterine insemination. Fertil Steril. 2009, 91: 777-781. 10.1016/j.fertnstert.2007.12.010. Dorjpurev U, Kuwahara A, Yano Y, Taniguchi T, Yamamoto Y, Suto A, Tanaka Y, Matsuzaki T, Yasui T, Irahara M: Effect of semen characteristics on pregnancy rate following intrauterine insemination. J Med Invest. 2011, 58: 127-133. 10.2152/jmi.58.127. Kamath MS, Bhave P, Aleyamma T, Nair R, Chandy A, Mangalaraj AM, Muthukumar K, George K: Predictive factors for pregnancy after intrauterine insemination: A prospective study of factors affecting outcome. J Hum Reprod Sci. 2010, 3: 129-134. 10.4103/0974-1208.74154. Wainer R, Albert M, Dorion A, Bailly M, Bergere M, Lombroso R, Gombault M, Selva J: Influence of the number of motile spermatozoa inseminated and of their morphology on the success of intrauterine insemination. Hum Reprod. 2004, 19: 2060-2065. 10.1093/humrep/deh390. Matorras R, Osuna C, Exposito A, Crisol L, Pijoan JI: Recombinant FSH versus highly purified FSH in intrauterine insemination: systematic review and metaanalysis. Fertil Steril. 2011, 95: 1937-1942. 10.1016/j.fertnstert.2011.02.030. e1933 Allegra A, Marino A, Coffaro F, Scaglione P, Sammartano F, Rizza G, Volpes A: GnRH antagonist-induced inhibition of the premature LH surge increases pregnancy rates in IUI-stimulated cycles. A prospective randomized trial. Hum Reprod. 2007, 22: 101-108. Cantineau AE, Cohlen BJ, Klip H, Heineman MJ: The addition of GnRH antagonists in intrauterine insemination cycles with mild ovarian hyperstimulation does not increase live birth rates--a randomized, double-blinded, placebo-controlled trial. Hum Reprod. 2011, 26: 1104-1111. 10.1093/humrep/der033. Lazaros L, Kaponis A, Vartholomatos G, Hatzi E, Botsari S, Plachouras N, Makrydimas G, Zikopoulos K, Sofikitis N, Georgiou I: Using semen flow cytometry to evaluate association of ploidy status and chromatin condensation of spermatozoa with conventional semen parameters: clinical application in intrauterine insemination. Fertil Steril. 2011, 95: 110-115. 10.1016/j.fertnstert.2010.05.012. van der Poel N, Farquhar C, Abou-Setta AM, Benschop L, Heineman MJ: Soft versus firm catheters for intrauterine insemination. Cochrane Database Syst Rev. 2010, CD006225- Burr RW, Siegberg R, Flaherty SP, Wang XJ, Matthews CD: The influence of sperm morphology and the number of motile sperm inseminated on the outcome of intrauterine insemination combined with mild ovarian stimulation. Fertil Steril. 1996, 65: 127-132. Belaisch-Allart J, Mayenga JM, Plachot M: [Intra-uterine insemination]. Contracept Fertil Sex. 1999, 27: 614-619. Guerif F: [Which assisted reproduction technique as a function of sperm morphology?]. Gynecol Obstet Fertil. 2010, 38: 508-510. 10.1016/j.gyobfe.2010.07.002. Karabinus DS, Gelety TJ: The impact of sperm morphology evaluated by strict criteria on intrauterine insemination success. Fertil Steril. 1997, 67: 536-541. 10.1016/S0015-0282(97)80082-9. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM: World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010, 16: 231-245. 10.1093/humupd/dmp048. Oliveira JB, Petersen CG, Massaro FC, Baruffi RL, Mauri AL, Silva LF, Ricci J, Franco JG: Motile sperm organelle morphology examination (MSOME): intervariation study of normal sperm and sperm with large nuclear vacuoles. Reprod Biol Endocrinol. 2010, 8: 56-10.1186/1477-7827-8-56. Bartoov B, Fisher J, Eltes F, Langzam J, Lunenfeld B: A comparative morphological analysis of abnormal human spermatozoa. Advances in Diagnosis and Treatment of Infertility. Edited by: Insler V, Bettendorf G. 1981, Amsterdam: Elsevier/North Holland, 355-373. Berkovitz A, Eltes F, Ellenbogen A, Peer S, Feldberg D, Bartoov B: Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome?. Hum Reprod. 2006, 21: 1787-1790. 10.1093/humrep/del049. Franco JG, Mauri AL, Petersen CG, Massaro FC, Silva LF, Felipe V, Cavagna M, Pontes A, Baruffi RL, Oliveira JB, Vagnini LD: Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Andro. 2011 Garolla A, Fortini D, Menegazzo M, De Toni L, Nicoletti V, Moretti A, Selice R, Engl B, Foresta C: High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online. 2008, 17: 610-616. 10.1016/S1472-6483(10)60307-0. Toshimori K, Ito C: Human sperm ultrastructures and fertility. J Mamm Ova Res. 2008, 25: 232-239. 10.1274/0916-7625-25.4.232. Gopalkrishnan K, Padwal V, Meherji PK, Gokral JS, Shah R, Juneja HS: Poor quality of sperm as it affects repeated early pregnancy loss. Arch Androl. 2000, 45: 111-117. 10.1080/014850100418800. Kacem O, Sifer C, Barraud-Lange V, Ducot B, De Ziegler D, Poirot C, Wolf J: Sperm nuclear vacuoles, as assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reprod Biomed Online. 2010, 20: 132-137. 10.1016/j.rbmo.2009.10.014. Junca A, Cohen-Bacrie P, Hazout A: Improvement of fertilization and pregnancy rate after intracytoplasmic fine morphologically selected sperm injection. Fertil Steril. 2004, 82: S173- Hazout A, Dumont-Hassan M, Junca AM, Cohen Bacrie P, Tesarik J: High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. 2006, 12: 19-25. 10.1016/S1472-6483(10)60975-3. Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, Uher P, Zintz M, Lejeune B, Vanderzwalmen S, et al: Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online. 2008, 17: 617-627. 10.1016/S1472-6483(10)60308-2. Tasaka A, Doshida M, Sato Y, Kyoya T, Nakajo Y, Kyono K: Outcome of IMSI (intracytoplasmic morphologically selected sperm injection) in patients with repeated ICSI failures. Fertil Steril. 2009, 92: S76- Bar-Chama N, Schiff J, Luna M, Dann AB, Copperman JB: The level of sperm vacuoles in the fresh post-processed sperm sample significantly affects IVF cycle outcomes. Fertil Steril. 2007, 88: S18- Franken DR, Kruger TF: The what is a normal spermatozoon?. Atlas of Human Sperm Morphology Evaluation. Edited by: Kruger TF, Franken DR. 2004, London: Taylor and Francis, 49-74.