Hiệu quả của phương pháp MADM mờ trong giai đoạn phân tích Six Sigma trong ngành công nghiệp ô tô

Journal of Industrial Engineering International - Tập 12 - Trang 377-387 - 2016
Rajeev Rathi1, Dinesh Khanduja1, S. K. Sharma1
1Department of Mechanical Engineering, National Institute of Technology, Kurukshetra, India

Tóm tắt

Sáu Sigma là một chiến lược nhằm đạt được cải tiến quy trình và xuất sắc trong vận hành bên trong một tổ chức. Quyết định về việc lựa chọn các tham số quan trọng trong giai đoạn phân tích luôn là rất quan trọng; nó đóng vai trò chủ yếu trong việc thực hiện thành công dự án Sáu Sigma và cải thiện năng suất trong môi trường sản xuất và liên quan đến những thông tin không chính xác, mơ hồ và không chắc chắn. Sử dụng phương pháp nghiên cứu trường hợp, bài báo trình bày một cách tiếp cận chiến thuật để lựa chọn các yếu tố quan trọng của sự cố máy móc trong phần mài không tâm (CLG) tại một ngành công nghiệp ô tô bằng cách sử dụng phương pháp ra quyết định đa thuộc tính dựa trên logic mờ. Trong bối cảnh này, chúng tôi đã xem xét sáu thuộc tính quan trọng cho việc lựa chọn các yếu tố quyết định cho sự cố. Thời gian trung bình giữa các lần hỏng hóc được phát hiện là tiêu chí lựa chọn then chốt trong phần CLG. Sau khi tính toán các trọng số phù hợp với tiêu chí thông qua hai phương pháp (fuzzy VIKOR và fuzzy TOPSIS), các yếu tố quan trọng cho sự cố đã được ưu tiên. Kết quả của chúng tôi hoàn toàn thống nhất với những nhận thức của bộ phận sản xuất và bảo trì của công ty.

Từ khóa

#Sáu Sigma #phân tích giai đoạn #mài không tâm #logic mờ #ra quyết định đa thuộc tính #cải tiến quy trình #ngành công nghiệp ô tô

Tài liệu tham khảo

Afshari A, Mojahed M et al (2010) Simple additive weighting approach to personnel selection problem. Int J Innov Manag Technol 1(5):511–515 Amer Y, Luong L et al (2008) Optimizing order fulfillment using design for six sigma and fuzzy logic. Int J Manag Sci Eng Manag 3(2):83–99 Antony J, Kumar A et al (2006) World class applications of six sigma. Routledge, London Ayağ Z, Özdemir RG (2011) An intelligent approach to machine tool selection through fuzzy analytic network process. J Intell Manuf 22(2):163–177 Azar A, Olfat L et al (2011) A BSC method for supplier selection strategy using TOPSIS and VIKOR: a case study of part maker industry. Manag Sci Lett 1(4):559–568 Banuelas R, Antony J et al (2005) An application of Six Sigma to reduce waste. Qual Reliab Eng Int 21(6):553–570 Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141–B-164 Bevilacqua M, Ciarapica F et al (2006) A fuzzy-QFD approach to supplier selection. J Purch Supply Manag 12(1):14–27 Bhutta KS, Huq F (2002) Supplier selection problem: a comparison of the total cost of ownership and analytic hierarchy process approaches. Supply Chain Manag Int J 7(3):126–135 Chakrabarty A, Tan KC (2007) The current state of six sigma application in services. Manag Serv Qual 17(2):194–208 Chen C-T (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9 Chen Y-K, Liao H-C (2003) An investigation on selection of simplified aggregate production planning strategies using MADM approaches. Int J Prod Res 41(14):3359–3374 Chen SJ, Hwang CL, Hwang FP (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, New York, NY Cheng C-H, Mon D-L (1994) Evaluating weapon system by analytical hierarchy process based on fuzzy scales. Fuzzy Sets Syst 63(1):1–10 Chu T-C (2002) Selecting plant location via a fuzzy TOPSIS approach. Int J Adv Manuf Technol 20(11):859–864 Chu T-C, Lin Y-C (2003) A fuzzy TOPSIS method for robot selection. Int J Adv Manuf Technol 21(4):284–290 Dey PP, Pramanik S, et al (2014) TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming. J Ind Eng Int 10(4):173–184 Ding S-H, Kamaruddin S (2015) Assessment of distance-based multi-attribute group decision-making methods from a maintenance strategy perspective. J Ind Eng Int 11:73–85 Eckes G (2003) Six Sigma for everyone. Wiley, New York Harry M, Schroeder R (2005) Six Sigma: the breakthrough management strategy revolutionizing the world’s top corporations. Random House, LLC, New York Jiju A (2004) Some pros and cons of six sigma: an academic perspective. TQM Mag 16(4):303–306 Jiju A, Maneesh K et al (2005) Six sigma in small- and medium-sized UK manufacturing enterprises. Int J Qual Reliab Manag 22(8):860–874 Kahraman C, Cebeci U et al (2003) Multi-criteria supplier selection using fuzzy AHP. Logist Inf Manag 16(6):382–394 Khanna HK, Sharma D et al (2011) Identifying and ranking critical success factors for implementation of total quality management in the Indian manufacturing industry using TOPSIS. Asian J Qual 12(1):124–138 Kulak O, Kahraman C (2005) Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int J Prod Econ 95(3):415–424 Kwong C, Bai H (2003) Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Trans 35(7):619–626 Linderman K, Schroeder RG et al (2003) Six Sigma: a goal-theoretic perspective. J Oper Manag 21(2):193–203 Liu F-HF, Hai HL (2005) The voting analytic hierarchy process method for selecting supplier. Int J Prod Econ 97(3):308–317 Liu H-C, You J-X et al (2014) Site selection in waste management by the VIKOR method using linguistic assessment. Appl Soft Comput 21:453–461 Neuman RP, Cavanagh R (2000) The six sigma way: how GE, Motorola, and other top companies are honing their performance. McGraw-Hill, New York Nguyen H-T, Dawal SZM et al (2014) A hybrid approach for fuzzy multi-attribute decision making in machine tool selection with consideration of the interactions of attributes. Expert Syst Appl 41(6):3078–3090 Nydick RL, Hill RP (1992) Using the analytic hierarchy process to structure the supplier selection procedure. J Supply Chain Manag 28(2):31 Olson DL (2004) Comparison of weights in TOPSIS models. Math Comput Model 40(7–8):721–727 Önüt S, Soner S (2008) Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Manag 28(9):1552–1559 Opricovic S (2011) Fuzzy VIKOR with an application to water resources planning. Expert Syst Appl 38(10):12983–12990 Pahlavani A (2010) A new fuzzy MADM approach and its application to project selection problem. Int J Comput Intell Syst 3(1):103–114 Perego A, Rangone A (1998) A reference framework for the application of MADM fuzzy techniques to selecting AMTS. Int J Prod Res 36(2):437–458 Rabbani M, Monshi M, et al. (2014) A new AATP model with considering supply chain lead-times and resources and scheduling of the orders in flowshop production systems: a graph-theoretic view. Appl Math Model 38(24):6098–6107 Radcliffe LL, Schniederjans MJ (2003) Trust evaluation: an AHP and multi-objective programming approach. Manag Decis 41(6):587–595 Saaty TL (1988) What is the analytic hierarchy process?. Springer, New York Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26 Saaty TL (2014) The analytic hierarchy process without the theory of Oskar Perron. Int J Anal Hierarchy Process 5(2). doi:10.13033/ijahp.v5i2.191 Sanayei A, Farid Mousavi S et al (2010) Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst Appl 37(1):24–30 Satty TL (1980) The analytic hierarchy process. McGraw-Hill, New York Satty TL (1994) Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh Singh H, Kumar R (2014). Selection of chain-material in automobile sector using multi attribute decision making approach. Paper presented at the annual meeting of the ISAHP. Grand Hyatt Hotel, Washington, D.C Singh J, Singh H (2014) Performance enhancement of manufacturing unit using Six Sigma DMAIC approach: a case study. In: Proceedings of the international conference on research and innovations in mechanical engineering. Springer Snee RD, Hoerl RW (2003) Leading Six Sigma: a step-by-step guide based on experience with GE and other Six Sigma companies. FT Press, Upper Saddle River Snee R, Hoerl R (2004) Six Sigma beyond the factory floor: deployment strategies for financial services, health care, and the rest of the real economy. PH Professional Business Tahriri F, Mousavi M et al (2014) The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection. J Ind Eng Int 10(3):1–16 Tilo P, Wolf R et al (2004) Integrating six sigma with quality management systems. The TQM Magazine 16(4):241–249 Tiwary A, Pradhan B et al. (2014) Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Adv Manuf 2:251–258 Tönshoff HK, Reinsch S et al (2007) Soft-computing algorithms as a tool for the planning of cyclically interlinked production lines. Prod Eng Res Devel 1(4):389–394 Vats G, Vaish R (2013) Selection of lead-free piezoelectric ceramics. Int J Appl Ceram Technol 11(5):883–893 Vats G, Vaish R (2014a) Phase change materials selection for latent heat thermal energy storage systems (LHTESS): an industrial engineering initiative towards materials science. Adv Sci Focus 2(2):140–147 Vats G, Vaish R (2014b) Selection of optimal sintering temperature of K <sub> 0.5 </sub> Na <sub> 0.5</sub> NbO <sub> 3 </sub> ceramics for electromechanical applications. J Asian Ceram Soc 2(1):5–10 Wang Y-M, Elhag TMS (2006) Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst Appl 31(2):309–319 Wei C-C, Liang G-S et al (2007) A comprehensive supply chain management project selection framework under fuzzy environment. Int J Proj Manag 25(6):627–636 Yoon KP, Hwang C-L (1995) Multiple attribute decision making: an introduction. Sage Publications, Beverley Hills Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249 Zu X, Fredendall LD et al (2008) The evolving theory of quality management: the role of Six Sigma. J Oper Manag 26(5):630–650