Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu quả của phương pháp MADM mờ trong giai đoạn phân tích Six Sigma trong ngành công nghiệp ô tô
Tóm tắt
Sáu Sigma là một chiến lược nhằm đạt được cải tiến quy trình và xuất sắc trong vận hành bên trong một tổ chức. Quyết định về việc lựa chọn các tham số quan trọng trong giai đoạn phân tích luôn là rất quan trọng; nó đóng vai trò chủ yếu trong việc thực hiện thành công dự án Sáu Sigma và cải thiện năng suất trong môi trường sản xuất và liên quan đến những thông tin không chính xác, mơ hồ và không chắc chắn. Sử dụng phương pháp nghiên cứu trường hợp, bài báo trình bày một cách tiếp cận chiến thuật để lựa chọn các yếu tố quan trọng của sự cố máy móc trong phần mài không tâm (CLG) tại một ngành công nghiệp ô tô bằng cách sử dụng phương pháp ra quyết định đa thuộc tính dựa trên logic mờ. Trong bối cảnh này, chúng tôi đã xem xét sáu thuộc tính quan trọng cho việc lựa chọn các yếu tố quyết định cho sự cố. Thời gian trung bình giữa các lần hỏng hóc được phát hiện là tiêu chí lựa chọn then chốt trong phần CLG. Sau khi tính toán các trọng số phù hợp với tiêu chí thông qua hai phương pháp (fuzzy VIKOR và fuzzy TOPSIS), các yếu tố quan trọng cho sự cố đã được ưu tiên. Kết quả của chúng tôi hoàn toàn thống nhất với những nhận thức của bộ phận sản xuất và bảo trì của công ty.
Từ khóa
#Sáu Sigma #phân tích giai đoạn #mài không tâm #logic mờ #ra quyết định đa thuộc tính #cải tiến quy trình #ngành công nghiệp ô tôTài liệu tham khảo
Afshari A, Mojahed M et al (2010) Simple additive weighting approach to personnel selection problem. Int J Innov Manag Technol 1(5):511–515
Amer Y, Luong L et al (2008) Optimizing order fulfillment using design for six sigma and fuzzy logic. Int J Manag Sci Eng Manag 3(2):83–99
Antony J, Kumar A et al (2006) World class applications of six sigma. Routledge, London
Ayağ Z, Özdemir RG (2011) An intelligent approach to machine tool selection through fuzzy analytic network process. J Intell Manuf 22(2):163–177
Azar A, Olfat L et al (2011) A BSC method for supplier selection strategy using TOPSIS and VIKOR: a case study of part maker industry. Manag Sci Lett 1(4):559–568
Banuelas R, Antony J et al (2005) An application of Six Sigma to reduce waste. Qual Reliab Eng Int 21(6):553–570
Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141–B-164
Bevilacqua M, Ciarapica F et al (2006) A fuzzy-QFD approach to supplier selection. J Purch Supply Manag 12(1):14–27
Bhutta KS, Huq F (2002) Supplier selection problem: a comparison of the total cost of ownership and analytic hierarchy process approaches. Supply Chain Manag Int J 7(3):126–135
Chakrabarty A, Tan KC (2007) The current state of six sigma application in services. Manag Serv Qual 17(2):194–208
Chen C-T (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9
Chen Y-K, Liao H-C (2003) An investigation on selection of simplified aggregate production planning strategies using MADM approaches. Int J Prod Res 41(14):3359–3374
Chen SJ, Hwang CL, Hwang FP (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, New York, NY
Cheng C-H, Mon D-L (1994) Evaluating weapon system by analytical hierarchy process based on fuzzy scales. Fuzzy Sets Syst 63(1):1–10
Chu T-C (2002) Selecting plant location via a fuzzy TOPSIS approach. Int J Adv Manuf Technol 20(11):859–864
Chu T-C, Lin Y-C (2003) A fuzzy TOPSIS method for robot selection. Int J Adv Manuf Technol 21(4):284–290
Dey PP, Pramanik S, et al (2014) TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming. J Ind Eng Int 10(4):173–184
Ding S-H, Kamaruddin S (2015) Assessment of distance-based multi-attribute group decision-making methods from a maintenance strategy perspective. J Ind Eng Int 11:73–85
Eckes G (2003) Six Sigma for everyone. Wiley, New York
Harry M, Schroeder R (2005) Six Sigma: the breakthrough management strategy revolutionizing the world’s top corporations. Random House, LLC, New York
Jiju A (2004) Some pros and cons of six sigma: an academic perspective. TQM Mag 16(4):303–306
Jiju A, Maneesh K et al (2005) Six sigma in small- and medium-sized UK manufacturing enterprises. Int J Qual Reliab Manag 22(8):860–874
Kahraman C, Cebeci U et al (2003) Multi-criteria supplier selection using fuzzy AHP. Logist Inf Manag 16(6):382–394
Khanna HK, Sharma D et al (2011) Identifying and ranking critical success factors for implementation of total quality management in the Indian manufacturing industry using TOPSIS. Asian J Qual 12(1):124–138
Kulak O, Kahraman C (2005) Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int J Prod Econ 95(3):415–424
Kwong C, Bai H (2003) Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Trans 35(7):619–626
Linderman K, Schroeder RG et al (2003) Six Sigma: a goal-theoretic perspective. J Oper Manag 21(2):193–203
Liu F-HF, Hai HL (2005) The voting analytic hierarchy process method for selecting supplier. Int J Prod Econ 97(3):308–317
Liu H-C, You J-X et al (2014) Site selection in waste management by the VIKOR method using linguistic assessment. Appl Soft Comput 21:453–461
Neuman RP, Cavanagh R (2000) The six sigma way: how GE, Motorola, and other top companies are honing their performance. McGraw-Hill, New York
Nguyen H-T, Dawal SZM et al (2014) A hybrid approach for fuzzy multi-attribute decision making in machine tool selection with consideration of the interactions of attributes. Expert Syst Appl 41(6):3078–3090
Nydick RL, Hill RP (1992) Using the analytic hierarchy process to structure the supplier selection procedure. J Supply Chain Manag 28(2):31
Olson DL (2004) Comparison of weights in TOPSIS models. Math Comput Model 40(7–8):721–727
Önüt S, Soner S (2008) Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Manag 28(9):1552–1559
Opricovic S (2011) Fuzzy VIKOR with an application to water resources planning. Expert Syst Appl 38(10):12983–12990
Pahlavani A (2010) A new fuzzy MADM approach and its application to project selection problem. Int J Comput Intell Syst 3(1):103–114
Perego A, Rangone A (1998) A reference framework for the application of MADM fuzzy techniques to selecting AMTS. Int J Prod Res 36(2):437–458
Rabbani M, Monshi M, et al. (2014) A new AATP model with considering supply chain lead-times and resources and scheduling of the orders in flowshop production systems: a graph-theoretic view. Appl Math Model 38(24):6098–6107
Radcliffe LL, Schniederjans MJ (2003) Trust evaluation: an AHP and multi-objective programming approach. Manag Decis 41(6):587–595
Saaty TL (1988) What is the analytic hierarchy process?. Springer, New York
Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26
Saaty TL (2014) The analytic hierarchy process without the theory of Oskar Perron. Int J Anal Hierarchy Process 5(2). doi:10.13033/ijahp.v5i2.191
Sanayei A, Farid Mousavi S et al (2010) Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst Appl 37(1):24–30
Satty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
Satty TL (1994) Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh
Singh H, Kumar R (2014). Selection of chain-material in automobile sector using multi attribute decision making approach. Paper presented at the annual meeting of the ISAHP. Grand Hyatt Hotel, Washington, D.C
Singh J, Singh H (2014) Performance enhancement of manufacturing unit using Six Sigma DMAIC approach: a case study. In: Proceedings of the international conference on research and innovations in mechanical engineering. Springer
Snee RD, Hoerl RW (2003) Leading Six Sigma: a step-by-step guide based on experience with GE and other Six Sigma companies. FT Press, Upper Saddle River
Snee R, Hoerl R (2004) Six Sigma beyond the factory floor: deployment strategies for financial services, health care, and the rest of the real economy. PH Professional Business
Tahriri F, Mousavi M et al (2014) The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection. J Ind Eng Int 10(3):1–16
Tilo P, Wolf R et al (2004) Integrating six sigma with quality management systems. The TQM Magazine 16(4):241–249
Tiwary A, Pradhan B et al. (2014) Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Adv Manuf 2:251–258
Tönshoff HK, Reinsch S et al (2007) Soft-computing algorithms as a tool for the planning of cyclically interlinked production lines. Prod Eng Res Devel 1(4):389–394
Vats G, Vaish R (2013) Selection of lead-free piezoelectric ceramics. Int J Appl Ceram Technol 11(5):883–893
Vats G, Vaish R (2014a) Phase change materials selection for latent heat thermal energy storage systems (LHTESS): an industrial engineering initiative towards materials science. Adv Sci Focus 2(2):140–147
Vats G, Vaish R (2014b) Selection of optimal sintering temperature of K <sub> 0.5 </sub> Na <sub> 0.5</sub> NbO <sub> 3 </sub> ceramics for electromechanical applications. J Asian Ceram Soc 2(1):5–10
Wang Y-M, Elhag TMS (2006) Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst Appl 31(2):309–319
Wei C-C, Liang G-S et al (2007) A comprehensive supply chain management project selection framework under fuzzy environment. Int J Proj Manag 25(6):627–636
Yoon KP, Hwang C-L (1995) Multiple attribute decision making: an introduction. Sage Publications, Beverley Hills
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249
Zu X, Fredendall LD et al (2008) The evolving theory of quality management: the role of Six Sigma. J Oper Manag 26(5):630–650
